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Solutions to problem set 5

1. Define f: X VY — W by f(x) = (x,yp) for x € X and f(y) = (zo,y) for y € Y. This is
clearly bijective and maps the base point * € X VY to the base point (xg,y0). f is obviously
a homeomorphism away from *. Open neighboorhoods of (zg,yo) € W are of the form

N =

(U xA{yo}) U ({zo} x V) for U C X an open neighbourhood of x5 and V' C Y an open

neighbourhood of yo. Its inverse image is f~}(N) = 7(U)Un(V), where 7: XUY — X VY
denotes the projection. These are precisely the open neighbourhoods of * in X AY. We

conclude that f and f~! are both continuos in * and so f is a homeomorphism.

2. We denote the base-points by zg € X, yo € Y, z; € X’ and y; € Y’'. By assumption we
have f(xg) = x{, and g(yo) = yj. To show the claim, we can either work with the original

definition of X VY or with the equivalent definition using the space W from Exercise 1.

(a)

via the original definition.
We define
fVg: XVY - X' vY’

_J ), ifzeX
fve):= {g(z), ifzeY

via

This map is well defined as x, = f(xo) = g(yo) = yj in X' VY’ by definition of wedge,
and it still preserves base points. The map fV g is obviously continuous away from the
gluing point zg ~ yo of X VY. Let U’ be an open neighborhood of z{, in X’ VY’. By
definition of disjoint union topology and quotient topology, U has the form

U, uvu;

U= =7'(U;) Un(U,)

Lo ~ Yo
where x5 € U, C X’ and y5 C Uy C Y are open and 7’ is defined as in exercise 1. It
directly follows that

(f Vo) ' (U") = x(f71(U)) Un(g~ ' (U,))

which is open in X VY.
The fact that this construction respects identity maps and composition is obvious from
its definition.

via the definition using W.
We identify X VY with

W= (X x{yo}) U ({zo} x V)

and similarly for X’ VY, but we keep using the notation with V.

Define fV g: X VY — X' VY’ by (f V g)(z,90) = (f(2),y) and (f V g)(z0,y) :=
(26, 9(y)). fVgis well-defined as the maps f and g preserve base points, and preserves
the base point itself. Moreover, is clearly continous away from (xg,yo). An open
neighbourhood N’ = (U’ x {y{}) U ({zp} x V') of (xf,y)) has inverse image (f V
g) YN = (fF~YU") x {yo}) U ({wo} x g~ 1(V’')). This is an open neighbourhood
of (zg,yo). Therefore f V g is also continuos in (zg,yo). Again, the fact that this
construction respects identity maps and composition is obvious from its definition.



3. We denote by [z,y] € X AY the equivalence class of (z,y) € X x Y.

5.

(a)

(b)

(a)

Define fAg: X ANY — X' AY' by setting (f A g)[z,y] := [f(x),g(y)]. This is well-
defined: if (z,y) € X VY then (f(x),g(y)) € X' VY’ because f and g preserve base
points. f A g is continuos because f X g is continuous. Moreover, idx A idy = idxay
and (f'ofYAN(d og)=(f'ANg)o(fAg) formaps f': X' = X" and ¢: Y = Y". So
A is functorial.

Define oxy: X AY = Y AX by pxy([z,y] = [y,z]. It is easy to see that this is a
homeomorphism and that the diagram commutes.

Define ¥xyv,z: (X AY)ANZ = X ANY ANZ) by ¢x,v,z([[z,y], 2]) = [z, ]y, 2]]. Consider
the compositions

Tx,y Xid TXAY,Z

(X xY)x Z (XANY) x Z (XAY)AZ

and

idXTy, 7z TX,YANZ

X x (Y x 2) X x (Y AZ) XA(Y AZ).

Since all the spaces are locally compact, mxy X id and id X my,z are quotient maps
(see e.g. J. H. C. Whitehead, A note on a theorem of Borsuk, Bull. Amer. Math. Soc,
54 (1958), 1125-1132, Lemma 4). Therefore, the two compositions are both quotient
maps. It now follows from the universal property of quotient maps that ¥ xy,z is a
homeomorphism.

Naturality means that the following diagram commutes:

"«/}X,Y,Z

(XAY)AZ XA(YAZ)

\L(f/\g)/\h if/\(g/\h)

Yxr yr gt

(X'ANY)YNZ' —— X'NY'NZ).

This is easy to check.

The assumption that X, Y, Z are locally compact Hausdorff spaces is necessary. A coun-
terexample can be found in J. Peter May, Johann Sigurdsson, Parametrized Homotopy
Theory, Amer. Math. Soc, 10 (2006), section 1.7.

First of all, note that @ is a locally compact Hausdorff space and X AY is a compact
Hausdorff space. Denote by 7: X x Y — X AY the quotient map. Note that 7 sends
Q C X x Y bijectively to (X AY)\{x}. By Theorem 11.3 in Bredon, it is enough to
show that the injection 7|g: @ — X AY is a homeomorphism onto its image. Indeed,
m|q is open: An open set U C @ is also open in X x Y because @ is open in X x Y.
Moreover, 71 (7(U)) = U and hence 7(U) C X AY is open. We conclude that ¢ is
a homeomorphism onto its image and X AY is the 1-point compactification of Q.

The compactification of (S™\{zo}) X (S"\{yo}) & R™ x R™ = R™*" is S™+" T now
follows from (a) that S™ A S™ ~ S™+n,

The map

gn: RPN\ {0} — 7
x

T— —.

|||



descends to a homeomorphism RP™ — S™/(x ~ —z). The map
fn: B — RP"
T = (xla"'axn) — [xlw'wxna V 1- |$‘2]

descends to a homeomorphism (B"/ ~) — RP"™, where  ~ y in B" if and only if
r=-—y € oB™

RP? is a point and so it’s a CW-complex with one O-cell. View RP™ as B"/ ~. As
such, RP™ can be obtained as a 2-cell B" glued to 9B™/(x ~ —x) along the boundary
via the projection 0B™ — dB"/(x ~ —z). Note that

OB™)(x ~ —z) ~ S" ' /(z ~ —x) ~ RP" L.

Hence RP™ is obtained by gluing precisely one n-cell to RP"~!. This provides CW-
structures as claimed by proceeding inductivly over

RP° c RPPUB' =~ RP' c RP'UB?~RP?>C ....

The characteristic map for the k-cell ay, is f,, := fp: B¥ — RP¥ C RP". Note that
fa, is an embedding on Int(B*). Moreover, f,, (0B*) = {[z1,...,7},0] € RP*} ~
RP*=1 c RP™. The attaching map is its restriction to dB*:

foay: OBF =~ S*71 — RPF1 c RP™.

The cellular chain complex of RP™ has one copy of Z in each degree 0 < k < n and is
0 in all the other degrees. For the k-cell aj consider the projection

Pay: RPY ~ (B¥/ ~) — (B"/0B") ~ S*.

The differential di: Z — Z in degree 1 < k < n is given by multiplication with the
degree of the map pa, , foa, : S¥1 — SF71, 1 <k <n.[0] € B¥"1/oBF 1 ~ k-1
has two preimages under p,, _, foa,: N = (0,...,0,1) € S" L and S = (0,...,0,—1) €
S"~1. Near N, this map is an orientation-preserving homeomorphism. So the local
degree at N is 1. Near S, it is the antipodal map composed with an orientation-
preserving homeomorphism. So the local degree near S is (—1)*. Therefore,

0, k odd,

2, k even

deg(pakflfaak) =1+ (—1)k = {

Suppose n is even. Then the cellular chain complex is

0-22372% 72272%7 50

with non-zero groups exactly in degrees 0,...,n, and thus we obtain
Z, k=0
H,(RP"Z) = 7/2Z, k=1,3,....n—1
0 otherwise.

For n being odd, one computes similarly

Z, k=0,n
Hy(RP"Z) = Z/2Z, k=1,3...,n—2
0 otherwise.

An alternative solution can be found in Bredon, Chapter 1V. 14.



6.

8.

Compactify R? and consider the stereographic projection
m: 8% = R? U {o0}.

View the graph G in S2 by considering G := 7~ '(G) C S2. G defines a CW-structure on
S? with one 0-cell for each vertex of G, one 1-cell for each edge of G and one 2-cell for each
face of G.

The Euler characteristic of S? therefore is £(S?) = v — e + f. On the other hand, £(S5?) = 2,
as can been seen from singular homology. We conclude: v —e + f = 2.

We view T3 = I3/ ~ as the quotient space of the cube I under the relation that identifies
opposite faces of the boundary. From this description, one sees that 72 has a CW complex
structure with one 0-cell a (any of the corner points—note that these get identified under
I3 — T3), three 1-cells by, by, b3 (the line segments on the coordinate axes), three 2-cells
c1, ¢, c3 (the squares in the coordinate planes), and one 3-cell d (all of I?); in all these cases
the attaching maps is given by restriction of the quotient map I® — T3,

The corresponding cellular chain complex is
05227232732 7 50

with linear maps 0; which we now compute. We have 0; = 0 since the attaching maps
fo, : T — (T%)® = {a} take both boundary points 0,1 € I to the same point (cf. the remark
in Bredon after Theorem 10.3). We also have 9, = 0, since all maps py, fac, : 01> — S* have
degree 0 (by the same argument as for the standard CW complex structure of the 2-torus;
see Bredon example 10.5).

As for 03, consider any of the maps p., foq : 0I° — S?. Note that there are two opposite
faces of OI% in whose interiors this map restricts to a homeomorphism, and that the map
collapes the rest of OI% to a point in S2. The degree of p., faq is hence the sum of the two
local degrees at any two points g, ¢’ in the two first-mentioned faces which get mapped to the
same point in T3. Now note that the restrictions of p., faq to these faces are obtained from
one another by precomposing with an orientation-reversing map (for orientations induced
from an orientation of 9I2); therefore the sum of these local degrees vanishes. It follows that
also 93 = 0.

Summing up, we obtain
Z, 1=0,3,
73, i=1,2

g L.

Hy(T?) = {

(a) One possible CW complex structure has two 0-cells a, as (the north and south poles),
two 1-cells by,bs (the line segment mentioned in the description of X and another
segment on the sphere connecting the poles), and one 2-cell ¢. We then have

deg(pazfabj) - 1a deg(p(hfabj) =-1

for j = 1,2, supposing that the attaching maps fp, : I — X are such that both
map 0 € O to a; and 1 € OI to ay (cf. the remark in Bredon after Theorem 10.3).
Moreover, we have

deg(ps, foc) =0
for j = 1,2, as both maps py, fo. are null-homotopic. The cellular chain complex is

therefore
-1 -1

0-72%72 %72 4o, 51:(1 :

):ZQ—>ZQ.
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10.

Both the kernel and the cokernel of 9; are 1-dimensional, and therefore

[z, k=012,

0 otherwise.

(Note that there is an even simpler CW complex structure for X with exactly one k-cell
for k=0,1,2.)

(b) X ~ S§2v 8! implies H,(X) = H,(S% Vv S') = H,(52) ® H,(S'); hence Hy(X) =
Hy(X) = Z and Hy(X) = 0, from which the result above follows by the definition of
reduced homology.

Alternatively: Excising a neighbourhood of the point joining the two spheres yields
H,(X) = H,(D? 0D?) & H,(I,dI) from which the result above again follows easily.

We assume wlog that p and ¢ are coprime (otherwise divide by their greatest common
divisor), which implies that there exist integers a, b such that ap —bg = 1. Hence the matrix

a q
- (b p)
lies in SL(2,7Z) and therefore induces a homeomorphism ¢ : T? — T2 of T? = R?/Z2. Note
that W—! € SL(2,Z) takes the line given by pz = qy to the line given by z = 0, because ¥
takes (0,1) to (q,p) (and these vectors generate the two lines). Therefore 1) ~! takes C to the
curve C’ that’s the image of = 0 under R? — T2 and which is the 1-cell of the standard
CW complex structure on T2. Thus 72/C has a CW complex structure with one cell ay,

in dimensions k = 0,1,2, and the corresponding cellular differential vanishes (by the same
reasons as for 72). Therefore

L (T2/C) = {Z, k=0,1,2

0  otherwise.
We view S! x S! as I2/ ~, the quotient obtained by identifying opposite points on the
boundary of dI? as indicated in the figure below. We endow it with the corresponding
obvious CW complex structure with one 0-cell, two 1-cells, and one 2-cell and arrange this
to be such that the subspace S' V S! that gets collapsed is the union of the two closed
1-cells. Moreover, we equip S? with the obvious CW complex structure with one 0-cell and
one 2-cell, arranging that the O-cell is the point to which S V S' gets collapsed.

Our quotient map ¢ : S' x S! — S2? is cellular in this identification. Denoting the 2-cell
of S' x S! by o and the 2-cell of S? by 7, the map ga : C.(S* x S') — C.(S?) induced
by g on cellular chains takes o — ga(c) = 7 because deg(g,,) = 1 for the relevant map
gr.o : 5% — S? (see Bredon chapter IV. 11). The induced map g. : H2(S* x S*) x Hy(S?) is
hence the identity, and therefore g is not null-homotopic.



11.

Let now f : §?2 — S' x S! be a map in the other direction. Consider the covering map
q:R? = S1 x S' (obtained by identifying S' x S = R?/Z?). As 71(S?) is trivial, f can be
lifted to a map to R?, i.e., there exists a map f: S? — R? such that q o f: f. Since R? is
contractible, fis null-homotopic, and hence so is f.

As discussed in class, RP™ has a CW complex structure with exactly one k-cell for every
k=0,...,n. Therefore RP"/RP™ has a CW complex structure with one 0-cell ag and one

k-cell ay, for every k =m +1,...,n. As in the case RP", we have
0, k odd,

deg(p(lk—lfaak) =1+ (71)]C
2, k even.

Thus the cellular chain complex C,(RP™/RP™) has one copy of Z in degrees k = 0 and k =
m+1,...,n, and the cellular differential Cj,(RP"/RP™) — Cj_1(RP"/RP™) is 1 + (—1)k
for all k =m + 2,...,n and vanishes in all other cases. The homology is therefore

Z, k=0

Z, k=m+1@{ifm+1iseven),
Hy(RP"/RP™) =7, k=n (if nis odd),

Zo, m+1<k<nandkodd,

0, otherwise.




