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Problem set 5

Let X be a pointed space (i.e. a space endowed with a given base point x0 ∈ X).

All the spaces in problems 1 - 4 will be assumed to be pointed Hausdorff spaces

that are locally compact. Locally compact means that every point x ∈ X has a

compact neighbourhood. (Namely for every x ∈ X there exists an open subset

U ⊂ X and a compact subset K ⊂ X such that x ∈ U ⊂ K.)

1. Recall the wedge product X ∨ Y = (X ⊔ Y ) /(x0 ∼ y0) where x0 ∈ X

and y0 ∈ Y , endowed with the new base point ∗ = [x0] = [y0]. (Compare

to Problems 2.5 and 3.5.) Prove that (X ∨ Y, ∗) is homeomorphic to

(W, (x0, y0)) ⊂ (X × Y, (x0, y0)), where

W := (X × {y0}) ∪ ({x0} × Y ) ,

via an obvious homeomorphism that sends X ⊂ X ∨ Y ”identically” to

X × {y0} ⊂ W and Y ⊂ X ∨ Y ”identically” to {x0} × Y ⊂ W . In the

following exercises we will view X ∨ Y as the space W defined above.

2. Show that the constructionX∨Y is functorial for pointed spaces and maps

that preserve base points, i.e. if X ′, Y ′ are pointed spaces and f : X → X ′

and g : Y → Y ′ are maps that preserve base points, then we get a map

f ∨ g : X ∨ Y → X ′ ∨ Y ′ that also preserves base points. This assignment

satisfies idX ∨ idY = idX∨Y and (f ′ ◦ f) ∨ (g′ ◦ g) = (f ′ ∨ g′) ◦ (f ∨ g) for

maps X
f−→ X ′ f ′

−→ X ′′ and Y
g−→ Y ′ g′

−→ Y ′′.

3. Define the smash product of two pointed spaces X,Y as the pointed space

X ∧ Y = (X × Y )/(X ∨ Y ) endowed with the base point ∗ corresponding

to X ∨ Y .

(a) Show that the construction X ∧ Y is functorial (in the analogous

sense as for X ∨ Y in exercise 2).

(b) Show that there exists a natural homeomorphism

φX,Y : (X ∧ Y, ∗) → (Y ∧X, ∗).

By natural we mean that for all maps f : X → X ′, g : Y → Y ′ that

preserve base points, the following diagram commutes:

X ∧ Y
φX,Y //

f∧g

��

Y ∧X

g∧f

��
X ′ ∧ Y ′ φX′,Y ′

// Y ′ ∧X ′.
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(c) Show that there exists a natural homeomorphism

(X ∧ Y ) ∧ Z ≈ X ∧ (Y ∧ Z).

Naturality has a similar meaning as above, with respect to three maps

X → X ′, Y → Y ′, Z → Z ′.

4. Let X,Y be compact pointed spaces.

(a) Show that (X ∧ Y, ∗) ≈ (Q̂, q0), where Q = (X\{x0}) × (Y \{y0}),
Q̂ is the 1−point compactification of Q, and q0 ∈ Q̂ is the point

corresponding to infinity.

(b) Deduce that Sm ∧ Sn ≈ Sm+n.

5. Recall that RPn =
(
Rn+1\{0}

)
/ ∼, where x ∼ λx for all 0 ̸= λ ∈ R.

(a) Find explicit homeomorphisms between RPn and the following two

spaces:

Sn/ ∼, where x ∼ −x for all x ∈ Sn,

Bn/ ∼, where x ∼ −x for all x ∈ ∂Bn.

(b) Endow RPn with the structure of a CW-complex with precisely one

k-cell in each dimension 0 ≤ k ≤ n and no cells in dimension higher

than n.

(c) Calculate the cellular homology of RPn.

6. Let G ⊂ R2 be a finite connected planar graph with v vertices, e edges

and f faces. (A face is a region in R2 that is bounded by edges. The

infinitely large region outside of the graph is also a face, called the outer

face.) Prove the Euler formula:

v − e+ f = 2.

7. The 3-torus is the quotient space T 3 = R3/Z3 ≈ S1 × S1 × S1. Find a

CW-structure on T 3 and use it to compute H∗(T
3).

8. Consider the space X which is the union of the unit sphere S2 ⊂ R3 and

the line segment between the north and south poles.

(a) Give X a CW-structure and use it to compute H∗(X).

(b) Use that X is homotopy equivalent to S2 ∨ S1 to give an easier

computation of H∗(X).

9. Let C be the circle on the torus T 2 = R2/Z2 which is the image, under

the covering map R2 → T 2, of the line px = qy. Define X = T 2/C, the

quotient space obtained by identifying C to a point. Compute H∗(X).
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10. Show that the quotient map S1 × S1 → S2 collapsing the subspace S1 ∨
S1 ⊂ S1 × S1 to a point is not null-homotopic by showing that it induces

an isomorphism on H2. On the other hand, show via covering spaces that

any map S2 → S1 × S1 is null-homotopic.

11. Compute H∗(RPn/RPm) for m < n, using cellular homology and equip-

ping RPn with the standard CW-structure with RPm as its m-skeleton.

3


