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Solutions to problem set 6

1. Denote by D1, D2, D3 ⊂ X the images of the three discs that get glued together. With

A := D1 ∪ D2 and B := D2 ∪ D3, we have X = A ∪ B. We will apply Mayer-Vietoris to

(X,A,B). (The fact that the interiors of A and B do not cover X does not cause a problem

here, because A and B have open neighbourhoods A′ and B’ which deformation retract onto

them, obtained by adding a small “collar” neighbourhood to each, and such that A′ ∩ B′

deformation retracts onto A ∩B. Convince yourself of that!).

A and B are homeomorphic to Sn, and A ∩ B = D2 is a copy of Dn. Hence H∗(A ∩ B)

vanishes except in degree 0, and H∗(A), H∗(B) vanish except in degrees 0 and n. This

implies that the third arrow in the following portion of the Mayer-Vietoris sequence is an

isomorphism for all k ≥ 2:

0 → Hk(A ∩B) → Hk(A)⊕Hk(B) → Hk(X) → Hk−1(A ∩B) → . . .

i.e., Hk(X) ∼= Hk(A)⊕Hk(B) for all k ≥ 2. For k = 1, we obtain

0 → H1(A)⊕H1(B) → H1(X) → H0(A ∩B) → H0(A)⊕H0(B) → H0(X) → 0

Note that H0(A ∩ B) → H0(A) ⊕ H0(B) is injective as A ∩ B = D2 is path-connected,

and hence H1(X) → H0(A ∩ B) is zero by exactness. Hence we obtain an isomorphism

H1(X) ∼= H1(A) ⊕ H1(B) also in this case. Moreover, it is clear that H0(X) ∼= Z as X is

path-connected. Putting all together, we obtain

Hk(X) =


Z, k = 0,

Z2, k = n,

0, otherwise.

2. We view RP 2 as D2/ ∼, the quotient of D2 obtained by identifying antipodal points on

S1 = ∂D2. Let A ⊂ RP 2 be the image of the interior of D2 under the projection D2 →
RP 2, and let B ⊂ RP 2 be the image of a collar neighbourhood of ∂D2, homeomorphic to

[0, ε)× ∂D2. The subsets form an open cover of RP 2, and A∩B ≃ S1. The Mayer-Vietoris

sequence for (RP 2, A,B) is

0 → H2(RP 2) →H1(A ∩B) → H1(A)⊕H1(B) → H1(RP 2)

→H0(A ∩B) → H0(A)⊕H0(B) → H0(RP 2) → 0,

Note that H0(A ∩ B) → H0(A) ⊕ H0(B) is injective since A ∩ B ≃ S1 is path-connected;

moreover H1(A ∩B) = Z = H1(B), and H1(A) = 0. Hence we obtain an exact sequence

0 → H2(RP 2) → Z → Z → H1(RP 2) → 0.

The middle map Z → Z is multiplication by 2 because the canonical map D2 → RP 2

restricts to a degree 2 map on ∂D2. It follows that H2(RP 2) = 0 and H1(RP 2) = Z2;

moreover H0(RP 2) = Z as RP 2 is path-connected.
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3. Let A ⊂ K be the image of the interior of I2 under the projection I2 → K, and let B ⊂ K

be the image of a neighbourhood of ∂I2 homeomorphic to [0, ε) × ∂I2. Note that A is

homeomorphic to D2, while B deformation retracts onto the image of ∂I2 in K, which is

homeomorphic to S1 ∨ S1. The intersection A ∩ B is homotopy equivalent to S1. By the

same arguments as in the previous problem, the Mayer-Vietoris sequence for (K,A,B) yields

an exact sequence of the form

0 → H2(K) → H1(A ∩B) → H1(B) → H1(K) → 0

For suitable identitifications H1(A∩B) ∼= Z and H1(B) ∼= Z2, the middle map is Z (0,2)−−−→ Z2.

It follows that H2(K) = 0, H1(K) = Z2 ⊕Z; moreover, H0(K) = Z as K is path-connected.

4. Denote by P our polygon and by p : P → Σg the canonical projection. Let A be the image

of the interior of P under p, and let B be the image of a neighbourhood of ∂P which is

homeomorphic to [0, ε)×S1. From the Mayer-Vietoris sequence for (Σg, A,B) we obtain an

exact sequence

0 → H2(Σg) → H1(A ∩B) → H1(B) → H1(Σg) → 0

by the same argument as in the previous problems. The image of ∂P under p, considered

as a loop in Σg, represents the class [a1][b1][a
−1
1 ][b−1

1 ] . . . [ag][bg][a
−1
g ][b−1

g ] in π1(B), which

lies in the commutator subgroup of π1(B); hence its image in H1(B) vanishes. The map

H1(A ∩ B) → H1(B) is therefore zero, and we obtain H2(Σg) ∼= H1(A ∩ B) ∼= Z and

H1(Σg) ∼= H1(B) ∼= Z2g by exactness and because A ∩ B ≃ S1 and B ≃ S1 ∨ · · · ∨ S1 (2g

times). H0(Σg) ∼= Z is clear because Σg is path-connected.

5. We will show by induction that H0(Σg) ∼= Z, H1(Σg) ∼= Z2g, and H2(Σg) ∼= Z. For Σ1 = T 2,

this can be shown using e.g. cellular homology. To show it holds for Σg+1 (assuming it’s

already shown for Σk, k = 1, . . . , g), consider the cover of Σg+1 by open subsets A and B,

where A and B are homeomorphic to Σ∗
g := Σg \ {pt} resp. Σ∗

1 := Σ1 \ {pt}; the existence

of such a cover is indicated by the definition of Σg+1 as the connected sum of Σg and Σ1.

The punctured surface Σ∗
g is homotopy equivalent to S1∨ · · ·∨S1, a wedge of 2g circles (one

can see this using the polygon description of Σg given in problem 5.5), and henceH2(Σ
∗
g)

∼= 0,

H1(Σ
∗
g)

∼= Z2g as one can see using e.g. cellular homology. Since moreover the intersection

A ∩B is homotopy equivalent to S1, the Mayer-Vietoris sequence for (Σg+1, A,B) is

0 → H2(Σg+1) → H1(A ∩B) → H1(A)⊕H1(B) → H1(Σg+1) → H0(A ∩B) → . . . (1)

The homomorphism H1(A ∩ B) → H1(A) ⊕ H1(B) is zero because A ∩ B deformation

retracts onto a loop which lies in the commutator subgroup of both π1(A) and π1(B) (using

the polygon description, see the solution of problem 5.5); the homomorphism H1(Σg+1) →
H0(A∩B) is zero because A∩B is path-connected, and hence the inclusions of S1 into A and

B induce injective maps on H0. We therefore obtain isomorphisms H2(Σg+1) ∼= H1(S
1) ∼= Z

and H1(Σg+1) ∼= H1(Σ
∗
g)⊕H1(Σ

∗
1)

∼= Z2g ⊕Z2 = Z2g+2, as required. H0(Σg+1) ∼= Z is clear

as Σg+1 is path-connected.

(Remark. Using the polygon description of Σg is a bit of a short-cut, with which one

could dispense as follows. First one computes inductively that H2(Σ
∗
g) = 0 and H1(Σ

∗
g) =

Z2g, viewing Σg+1 as the connected sum of Σg and Σ∗
1 and applying Mayer-Vietoris to

(Σ∗
g+1,Σ

∗
g,Σ

∗∗
1 ), where Σ∗∗

1 denotes a twice-punctured torus. To get the induction started,

one computes that H2(Σ
∗
1) = 0 = H2(Σ

∗∗
1 ), H1(Σ

∗
1) = Z2 and H1(Σ

∗∗
1 ) = Z3 using cellular

homology. The Mayer-Vietoris sequence for (Σ∗
g+1,Σ

∗
g,Σ

∗∗
1 ) yields an exact sequence

0 → H2(Σ
∗
g+1) → H1(S

1) → H1(Σ
∗
g)⊕H1(Σ

∗∗
1 ) → H1(Σ

∗
g+1) → 0.
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The map H1(S
1) → H1(Σ

∗
g) ⊕H1(Σ

∗∗
1 ) is injective because the intersection Σ∗

g ∩ Σ∗∗
1 ≃ S1

generates a Z-summand in H1(Σ
∗∗
1 ) (check this using cellular homology), and hence the

second component of the map is non-zero. This implies that H2(Σ
∗
g+1) = 0 and H1(Σ

∗
g+1)

∼=
Z2g+2, using the inductive hypothesis. Having computed H∗(Σ

∗
g), one proceeds with the

inductive computation of H∗(Σg+1) using the Mayer-Vietoris sequence (??); the vanishing

of H1(A ∩ B) → H1(A) ⊕H1(B) can be checked by constructing inductively 2-chains in A

and B whose boundary is a circle homotopy equivalent to A ∩B.)

6. For S0 = {1,−1}, set c0 := 1 − (−1) ∈ ∆0(S
0). Then [c0] = [1] − [−1] generates H̃0(S

0).

(Recall that H̃0(S
0) is the kernel of the canonical map H0(S

0) → H0(pt), which maps both

generators [−1] and [1] of H0(S
0) to [pt].)

As for S1, consider 1-simplices c01, c
1
1 : ∆1 → S1 as indicated in the figure below, and let

c1 := c01 + c11 ∈ ∆1(S
1), which is a cycle. Consider now the cover of S1 by A = im c01 and

B = im c11 and the reduced Mayer-Vietoris sequence for (S1, A,B) (which exists despite the

fact that the interiors of A and B do not cover S1, by the same reason as in problem 5.2).

Then A ∩ B = S0, and the boundary morphism ∂∗ : H̃1(S
1) → H̃0(A ∩ B) = H̃0(S

0) takes

[c1] to [∂c01] = [1− (−1)] = [c0], our generator of H̃0(S
0).

To find a generator of H̃2(S
2), view S2 as the union of two copies D− and D+ of D2,

identified along their boundaries. Consider simplices c02, c
1
2, c

2
2, c

3
2 : ∆2 → S2 as indicated in

the figure; note that c2 = c02 + c12 + c22 + c32 ∈ ∆2(S
2) is a cycle. Consider now the Mayer-

Vietoris sequence for (S2, D−, D+). We have D− ∩ D+ = S1, and the boundary operator

∂∗ : H2(S
2) → H1(D− ∩D+) = H1(S

1) maps [c2] to [∂c02 + ∂c12] ∈ H1(D− ∩D+), which is

precisely [c01 + c11] = [c1].

7. Set A = X ∪ V and B = Y ∪U , thinking of these as subsets of X ∨ Y . Then A deformation

retracts onto X, B deformation retracts onto Y , and A ∩ B deformation retracts onto {∗},
the point at which the two spaces are joint. The reduced Mayer-Vietoris sequence for (X ∨
Y,A,B) takes the form

· · · → H̃k({∗}) → H̃k(X)⊕ H̃k(Y ) → H̃k(X ∨ Y ) → H̃k−1({∗}) → . . . ,

which yields H̃k(X ∨ Y ) ∼= H̃k(X)⊕ H̃k(Y ) for all k, because H̃k({∗}) = 0 for all k.

8. Let A,B ⊂ SX be the images of [0, 1) × X resp. (0, 1] × X under the canonical map

X × I → SX. A and B are both contractible and hence have vanishing reduced homology,

while A ∩B ≃ X. The reduced Mayer-Vietoris sequence

· · · → H̃k(A)⊕ H̃k(B) → H̃k(SX) → H̃k−1(X) → H̃k−1(A)⊕ H̃k−1(B) → . . .

hence yields H̃k(SX) ∼= H̃k−1(X) for all k.
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