

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Prof. Paul Biran

HS20

Exam in Algebraic Topology I - Winter 2021

Name:

First Name:

_

Legi-Nr.:

Please leave the following spaces blank!

	1. Corr.	2. Corr.	Points	Remarks
Problem 1				
Problem 2				
Problem 3				
Problem 4				
Problem 5				
Problem 6				
Total				
Grade				
Complete?				

Please read carefully!

- The exam is divided into two parts, **Part A** and **Part B**. Part A consists of four problems (1-4) and part B of two problems (5-6). Each problem is divided into sub-problems.
- For **Part A**: Please choose and solve **three out of the four** problems of Part A. **Only three problems will be graded.** Each problem in part A gives 16 points. You will not get additional points if you solve more than three problems.
- For **Part B**: Please choose and solve only **one out of the two** problems of Part B. **Only one problem will be graded**. Each problem in part B gives 12 points. You will not get additional points if you solve more than one problem.
- In case you hand in too many problems and/or do not clearly indicate which problems you wish to be graded we will only grade the problems that occur first in your work.
- All answers/statements/counter-examples in your work should be proved. (It is okay to use theorems/statements proved in class without reproving them.)
- The maximal score of the exam is **60 points** and the duration of the exam is **3 hours**.
- Do not mix sub-problems from different problems.
- The sub-problems of a problem are not necessarily related to each other.
- Please use a separate sheet of paper for each problem (but not subproblem) and hand in the sheets sorted according to the problem numbers.
- Please do not use red or green pens and do not use pencil.
- Please clearly write your full name on each of the sheets you hand in.
- No auxiliary materials are allowed.

Good Luck!

1. a) [4 Points] Let X be a space and $A \subset X$. Assume there is a retraction $r: X \to A$. Show that the inclusions $A \to X$ and $(X, \emptyset) \to (X, A)$ induce short exact sequences

$$0 \to H_k(A) \to H_k(X) \to H_k(X, A) \to 0,$$

for every $k \in \mathbb{Z}$.

- b) [2 Points] Does the sequence in part (a) split? Prove your answer.
- c) [10 Points] Let B be a space and $b_0 \in B$ a point. Let I := [0, 1] and define $X := B \times I$ and $A := (B \times \{0\}) \cup (\{b_0\} \times I) \cup (B \times \{1\}) \subset X$. Assume that there exists j > 0such that $H_j(B) \neq 0$. Show that there is no retraction $r: X \to A$.

Figure 1: The spaces A and X.

- 2. For $n \ge 1$ consider an *n*-dimensional finite CW complex X which is homeomorphic to S^n . Denote by \mathcal{I}_n its *n*-cells and let $\mathcal{I}'_n \subset \mathcal{I}_n$. Let $a = \sum_{\sigma \in \mathcal{I}'_n} n_\sigma \sigma$, $n_\sigma \in \mathbb{Z}$, be a chain in the cellular chain complex of X. Assume that a is a cycle and $[a] \neq 0 \in H_n^{CW}(X)$.
 - a) [12 Points] Prove that $\mathcal{I}_n = \mathcal{I}'_n$. *Hint:* Let Z be a space, B^n the closed n-dimensional ball and $f: \partial B^n \to Z$ a map. Let

$$Y = Z \cup_f B^n = (Z \sqcup B^n) / (\forall p \in \partial B^n \colon f(p) \sim p)$$

be the space obtained by attaching B^n to Z along its boundary using the map f. Let $0 \in \text{Int}B^n$ be the origin. Show that $Y \setminus \{0\}$ is homotopy equivalent to Z.

- b) [4 Points] Find a counterexample to the statement in (a) above, for every n, in case we only assume that X is homotopy equivalent to S^n .
- 3. a) [7 Points] Let C_{\bullet} be a bounded chain complex of finitely generated abelian groups. (C_{\bullet} bounded means that $C_i \neq 0$ for at most finitely many $i \in \mathbb{Z}$.) Prove that

$$\chi(C_{\bullet}) = \chi(H_*(C_{\bullet})).$$

- b) [2 Points] Let $0 \to A_N \to A_{N-1} \to \cdots \to A_1 \to A_0 \to 0$ be a long exact sequence of finitely generated abelian groups. Prove that $\chi(A_{\bullet}) = 0$.
- c) [7 Points] Let X be a space of bounded type (i.e. $H_i(X) \neq 0$ for at most finitely many *i*'s and for all *i*, $H_i(X)$ is finitely generated). Prove that

$$\chi(X \times S^1) = 0.$$

Hint: Use the Mayer-Vietoris long exact sequence to relate $H_*(X \times S^1)$ to $H_*(X)$.

4. Let X be a space and $f: S^n \to X, n \ge 1$, a map. Let B^{n+1} be the closed (n+1)-dimensional ball. Let X' be the space obtained by attaching B^{n+1} to X along $S^n = \partial B^{n+1}$ via the map f:

$$X' := X \cup_f B^{n+1} = \left(X \sqcup B^{n+1}\right) / (\forall p \in \partial B^{n+1} = S^n \colon f(p) \sim p).$$

a) [12 Points] Assume that $f_* \colon H_n(S^n) \to H_n(X)$ is 0. Prove that

$$H_{n+1}(X') \cong H_{n+1}(X) \oplus \mathbb{Z}$$

and

$$H_i(X') \cong H_i(X)$$
 for all $i \neq n+1$.

b) [4 Points] Assume that $f_* \colon H_n(S^n) \to H_n(X)$ is injective. Prove that

$$H_n(X') \cong H_n(X) / \operatorname{image}(f_*)$$

and

$$H_i(X') \cong H_i(X)$$
 for all $i \neq n$.

5. Consider the space X consisting of three disjoint 2-spheres that are joined by three paths as indicated in the picture:

- a) [2 Points] Calculate $\chi(X)$.
- b) [6 Points] Let Y be a 2-dimensional finite CW complex. Assume that there exists a covering $\pi: X \to Y$ and that $\operatorname{rank} H_2(Y) \neq \operatorname{rank} H_1(Y)$. Prove that π is a homeomorphism.
- c) [4 Points] Find an example of a covering π which is not 1:1, in case we drop the assumption rank $H_2(Y) \neq \text{rank}H_1(Y)$.
- 6. Let (A_{\bullet}, d_A) , (B_{\bullet}, d_B) be two chain complexes and $f: A_{\bullet} \to B_{\bullet}$ be a chain map. Define the mapping cylinder $(Z(f)_{\bullet}, d_Z)$ of f by $Z(f)_i := A_i \oplus A_{i-1} \oplus B_i$ with the differential given by

$$d_Z(a',a'',b) = (d_A(a') + a'', -d_A(a''), -f(a'') + d_B(b)) \ \forall a' \in A_i, a'' \in A_{i-1}, b \in B_i.$$

Define the mapping cone $(K(f)_{\bullet}, d_K)$ of f by $K(f)_i := A_{i-1} \oplus B_i$ with the differential given by

 $d_K(a'',b) = (-d_A(a''), -f(a'') + d_B(b)) \ \forall a'' \in A_{i-1}, b \in B_i.$

It is known that the mapping cone and the mapping cylinder are chain complexes, and that they fit into the following short exact sequence of chain complexes

$$0 \to A_{\bullet} \xrightarrow{j} Z(f)_{\bullet} \xrightarrow{p} K(f)_{\bullet} \to 0,$$

where the chain maps j and p are given by j(a) = (a, 0, 0) and p(a', a'', b) = (a'', b).

a) [7 Points] Let $0 \to A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet} \to 0$ be an exact sequence of chain complexes. Consider the maps

$$\beta \colon Z(f)_{\bullet} \to B_{\bullet}, \ (a', a'', b) \mapsto f(a') + b$$

and

$$\gamma \colon K(f)_{\bullet} \to C_{\bullet}, \ (a'', b) \mapsto g(b).$$

Show that these are chain maps and that the following diagramm commutes:

Show that β is a chain homotopy equivalence by finding a chain homotopy inverse to β .

b) [5 Points] Show that γ induces an isomorphism in homology.