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Exercise Sheet 2

1. Let f ∈ Z[X] be a non-constant polynomial. Let p be a prime number and α ∈ Z a
root of f modulo p, so that f(α) ≡ 0 mod p. The goal of this exercise is to prove one
form of what is known as Hensel’s lemma, which gives ways to “lift” roots of f modulo
primes to roots modulo higher powers.

1. For any integer k ≥ 1 and any β ∈ Z, prove that

f(α+ pkβ) ≡ f(α) + pkβf ′(α) mod pk+1.

2. If p does not divide f ′(α), prove that there exists β ∈ Z such that f(α + pβ) ≡
0 mod p2, and that β is unique modulo p.

3. If p does not divide f ′(α), prove that for any k ≥ 1, there exists a unique root αk

of f in Z/pkZ such that αk ≡ α mod p. Show also that αl ≡ αk mod pk if l ≥ k.

4. Find the unique element α ∈ Z/173Z such that α2 = −1 and α ≡ 4 mod 17.

2. Let p be an odd prime number.

1. For a ∈ Z/pZ, show that (a
p

)
≡ a(p−1)/2 mod p.

(Hint: note that the right-hand side is always 0, 1 or −1, then distinguish cases
according to the value of the Legendre symbol.)

2. Let a be coprime to p. For 1 ≤ b ≤ (p − 1)/2, let ϵ(b) ∈ {−1, 1} and r(b) ∈
{1, . . . , (p − 1)/2} be defined by the conditions that ab ≡ ϵ(b)r(b) mod p. Show
that ϵ(b) and r(b) are uniquely defined and that the map r is injective. Deduce
that

((p− 1)/2)!a(p−1)/2 ≡ (−1)µ((p− 1)/2)! mod p,

where µ is the number of integers b such that ϵ(b) = −1.

3. Deduce that (a/p) = (−1)µ. (This is known as “Gauss’s Lemma”.)

4. Show that (2/p) = 1 if p ≡ 1, 7 mod 8 and (2/p) = −1 otherwise. (Hint: use Gauss’s
Lemma, and consider the classes modulo 8 separately if needed to compute µ.)

3. For n ≥ 1, we denote by Fn the finite set of rational numbers of the form a/b where a
and b are coprime and 0 ≤ a ≤ b ≤ n.



1. Write down F5 as an ordered list of rational numbers. Do you notice anything
about either successive elements x < y of this list, or triples of successive elements
x < y < z?

2. Let x = a/b be an element of Fn, with the conditions 1 ≤ a ≤ b ≤ n, and a coprime
to b. Show that there exists integers c and d such that bc − ad = 1, c and d are
coprime and

0 ≤ n− b < d ≤ n.

(Hint: start with any solution of bc−ad = 1, and adapt it to satisfy the inequality.)

3. Show that c/d ∈ Fn and
c

d
≥ a

b
.

Let e/f be the next element after a/b in Fn. Show that c/d ≥ e/f , and that if
c/d > e/f , then c/d− e/f ≥ 1/(df) and e/f − a/b ≥ 1/(bf).

4. Deduce that c/d = e/f and that be− af = 1. (Hint: argue by contradiction using
the two previous questions.)

5. Show that if a/b < c/d < e/f are three successive elements in Fn, then

c

d
=

a+ e

b+ f
.

(Hint: use twice the previous result, and compute c and d in terms of the other
quantities.)

(The set Fn is called the set of Farey fractions of order n; Farey himself did not have
anything to do with proving the properties above.)

4. The goal of this exercise is to prove that π2 is irrational. For n ≥ 0, let

fn =
Xn(1−X)n

n!
∈ Q[X].

1. Show that for all n ≥ 1 and j ≥ 0, we have f
(j)
n (0) ∈ Z and f

(j)
n (1) ∈ Z.

2. Suppose that π2 = a/b where a and b are coprime positive integers. For n ≥ 1,
define gn : [0, 1] → R by

gn(x) = bn
n∑

j=0

(−1)jπ2(n−j)f (2j)
n (x).

Show that gn(0) ∈ Z and gn(1) ∈ Z.

3. Show that

gn(0) + gn(1) = π

∫ 1

0
an sin(πx)fn(x)dx.

(Hint: compute a primitive of x 7→ an sin(πx)fn(x) in terms of gn.)



4. Show that
0 < gn(0) + gn(1) <

πan

n!

for all n ≥ 1, and conclude.
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