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Exercise Sheet 4

1. Let K be a number field of degree n = [K : Q]. For x ∈ K, the norm of x, denoted N(x),
is defined to the determinant of the Q-linear map mx : K → K defined by mx(y) = xy.
(Note that N(x) is not necessarily ≥ 0, even when K = Q.)

1. For K = Q(
√
d), compute N(a + b

√
d) as a function of the rational numbers a

and b.
2. Show that N defines a group homomorphism K× → Q×.
3. Let E(K) be the set of embeddings of K in C. Show that

N(x) =
∏

ι∈E(K)

ι(x).

4. Let x ∈ ZK . Show that N(x) ∈ Z. Show also that x is a unit in Z×
K if and only if

N(x) ∈ {−1, 1}.
5. Let x ∈ ZK \ {0}. Show that there exists a Z-basis (e1, . . . , en) of ZK and integers

a1 | a2 | · · · | an such that

xZK = a1Ze1 ⊕ · · · ⊕ anZen.

(Hint: use the classification of finitely-generated abelian groups.)
6. Deduce that for all x ∈ ZK , we have |N(x)| = |xZK |, where the right-hand side is

the norm of a principal ideal.

2. A number field K is said to be euclidean (with respect to the norm) if, for any x and y
in ZK , with y ̸= 0, there exists q and r in ZK with |N(r)| < |N(y)| such that x = qy+r.

1. Show that if K is euclidean, then the class group of K is trivial.
2. Show that Q(

√
2) and Q(

√
−2) are euclidean.

3. Let K be a euclidean number field. Show that there exists a non-zero element
δ ∈ ZK , which is not a unit, and has the following property: the restriction to
Z×
K ∪ {0} of the reduction map modulo δ is surjective (i.e., any element of ZK is

congruent modulo δ to either 0 or a unit of ZK .)
4. Determine all possible choices of the element δ of the previous question for K = Q,

and determine one choice for K = Q(i)?
5. Deduce that Q(

√
−19) and Q(

√
−163) are not euclidean. (Hint: determine the units

in the corresponding rings of integers.) Note: one can show that both of these fields
have trivial class group, so the statement in Question 1 is not an equivalence.



3. Prove that any prime number p such that p ≡ 1 mod 8 or p ≡ 7 mod 8 is of the
form a2 − 2b2, where a and b are integers. Show that there are infinitely many such
representations. (Hint: use the field Q(

√
2).)

4. Let d be a squarefree positive integer such that −d ̸≡ 1 mod 4. Assume that d is not
a prime number. The goal of this exercise is to prove that the class group of K =
Q(

√
−d) = Q(i

√
d) is not trivial.

1. Prove that there exist integers a, b with 1 < a < b such that d = ab.

2. Let u and v ̸= 0 be integers. Show that any element of (u + v
√
−d)ZK has norm

≥ d.

3. Prove that the ideal generated by a and i
√
d in ZK is not principal.

5. The goal of this exercise is to prove that the Fermat equation x3 + y3 = z3 has no
integral solution with xyz ̸= 0, which was first proved by Euler. This is a fairly long
exercise – the more interesting part start at Question 3, and the first two questions
may be assumed without proof.

We denote ω = e2iπ/3 = (−1+ i
√
3)/2 and K = Q(

√
−3) = Q(ω). We have ZK = Z[ω].

We consider the equation
x3 + y3 = uz3 (1)

where u ∈ Z×
K is a parameter and the unknowns (x, y, z) are in ZK .

1. Show that ZK is a euclidean domain and that Z×
K = {−1, 1, ω, ω2,−ω,−ω2}.

2. Let λ = 1−ω. Show that λZK is a prime ideal with norm 3. In particular, the field
ZK/λZK is isomorphic to Z/3Z. We denote by v the λ-adic valuation on (non-zero)
ideals.

3. Show that if x ∈ ZK satisfies x ≡ 1 mod λ, then x3 ≡ 1 mod λ4. (Hint: write
x3 − 1 = (x− 1)(x− ω)(x− ω2) and use the fact that ω2 ≡ 1 mod λ.)

4. Show that (1) has no solution with λ not dividing xyz. (Hint: reduce modulo λ
and check cases.)

5. Let (x, y, z) be a solution of (1) for a given u ∈ Z×
K with v(xy) = 0. Show

that v(z) ≥ 2. (Hint: use the previous question and reduce modulo λ2.)

6. We fix from now on a solution (x, y, z) of (1) for a given u ∈ Z×
K with v(xy) = 0

and x coprime to y. Show that one of x + y, x + ωy or x + ω2y has λ-valuation
≥ 2, and that one may assume that x+ y has this property, which we consider to
be the case from now on.

7. Show then that v(x+ ωy) = v(x+ ω2y) = 1 and that v(x+ y) = 3v(z)− 2.

8. Show that gcd(x+ y, x+ωy) = gcd(x+ y, x+ω2y) = gcd(x+ωy, x+ω2y) = λZK

(where the gcds are in the sense of ideals).



9. Deduce that there exist units (ξ, η, ϑ) and elements (a, b, c) of ZK , each coprime
to λ, such that

ξa3λv(x+y) + ωηb3λ+ ω2ϑc3λ = 0.

(Hint: use unique factorization in ZK and combine the resulting expressions for
x+ y, x+ ωy, x+ ω2y.)

10. Deduce that there exist units ϵ and ϵ′ and elements r, s and t ∈ ZK such that

r3 + ϵs3 = ϵ′t3

and v(t) = v(z)− 1.

11. Show that ϵ ∈ {−1, 1} and deduce that there is a solution (x′, y′, z′) of (1), possibly
for a different unit than u, with v(z′) = v(z)− 1.

12. Conclude that (1), and the Fermat equation with exponent 3, have no solutions
with xyz ̸= 0. (This method of proof is known as infinite descent, and has its origin
in the proof by Fermat himself that the equation for exponent 4 has no solution,
which is easier as it does not require any algebraic number theory.)
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