
D-MATH Number Theory I 14.11.2024
Prof. Dr. Emmanuel Kowalski
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1. The goal of this exercise is to compute the “probability” that two integers m and n,
both ≤ x, are coprime.

1. Let x ≥ 1 be a real number. Show that

|{(m,n) | 1 ≤ m,n ≤ x (m,n) = 1}| =
∑
d≤x

µ(d)
∑

m,n≤x
d|(m,n)

1,

where (m,n) denotes the gcd of m and n.

2. Deduce that

|{(m,n) | 1 ≤ m,n ≤ x (m,n) = 1}| = 6

π2
x2 +O(x log x)

for x ≥ 2.

2. Let f ≥ 0 be an arithmetic function.

1. Suppose that for every integer k ≥ 1, the Dirichlet series

∑
n≥1

f(n)k

ns

for fk converges for Re(s) > 1. Prove then that for any ϵ > 0, we have f(n) ≪ nϵ

for n ≥ 1.

2. Deduce that, for all ϵ > 0, the divisor function d satisfies d(n) ≪ nϵ for all n ≥ 1.

In the remainder of this exercise, we give a different proof of the last statement (which
can be adapted to other functions).

3. Let ϵ > 0 be given. Prove that there exists a real number P , depending only on ϵ,
such that

d(pv) ≤ pvϵ

for all p ≥ P and all integers v ≥ 1.

4. Deduce that for all ϵ > 0, the divisor function d satisfies d(n) ≪ nϵ for all n ≥ 1.



3. Let K be a number field. Let rK(n) be the arithmetic function defined by

rK(n) = |{n ⊂ ZK | |n| = n}|

for all integers n ≥ 1 (number of integral ideals of norm n).

1. Show that rK(n) is well-defined.

2. Show that rK is a multiplicative function.

3. Let k = [K : Q]. Show that for p prime and v ≥ 1, we have

rK(pv) ≤ |{(a1, . . . , ak) | ai ≥ 0 and
∑
i

ai = v}| ≤ (v + 1)k.

4. Deduce that for all ϵ > 0, we have the bound rK(n) ≪ nϵ for all n ≥ 1. (Hint: use
the previous exercise.)

4. Let f be an arithmetic function, and suppose that for every prime number p, there
exist complex numbers αp and βp such that αpβp = 1 and∑

n≥1

f(n)n−s =
∏
p

(1− αpp
−s)−1(1− βpp

−s)−1

for Re(s) large enough.

1. Show that for all primes p and all integers v ≥ 0, we have

f(pv) =

v∑
j=0

αj
pβ

v−j
p .

2. Assume that, for all ϵ > 0, we have f(n) ≪ nϵ for n ≥ 1. Let p be a prime number.
Show that the power series ∑

v≥0

f(pv)Xv

has radius of convergence ≥ 1, and deduce that |αp| = |βp| = 1.

3. Conclude that, under the assumption of the previous question, we have |f(n)| ≤
d(n) for all n ≥ 1.

5. We recall that φ(n) = |(Z)/nZ)×| for all n ≥ 1.

1. Prove that
φ(n) = n

∑
d|n

µ(d)

d

for all n ≥ 1.



2. Prove that ∑
n≤x

φ(n) =
3

π2
x2 +O(x log x)

for x ≥ 1.

3. Prove that
φ(n) = n

∏
p|n

(
1− 1

p

)
,

and deduce that n/φ(n) = O(log n) for n ≥ 2. (Hint: bound it above by ζ(2)
∑

d≤n 1/d.)

4. Deduce from problem (5.1) that the function e(n) = |{m ≥ 1 | φ(m) = n}| is a
well-defined arithmetic function. Show that φ(n) is even for all n ≥ 3, and deduce
that the function e is not multiplicative.

5. Prove that the Dirichlet series

F (s) =
∑
n≥1

e(n)

ns
=

∑
m≥1

1

φ(m)s

converges absolutely for Re(s) > 1 and that we have in this region an equality

F (s) = ζ(s)R(s)

where R is a function defined by an infinite product over primes which is holomor-
phic in the half-plane defined by Re(s) > 0. Does the existence of this factorization
contradict the fact that e is not multiplicative?

6. Deduce that F has analytic continuation to the region Re(s) > 0 with a unique
simple pole at s = 1 with residue

r =
π2

6

∏
p

(
1 +

1

p3

)
.
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