Exercise Sheet 5

- 1. The goal of this exercise is to compute the "probability" that two integers m and n , both $\leq x$, are coprime.
	- 1. Let $x \geq 1$ be a real number. Show that

$$
|\{(m,n) \mid 1 \le m,n \le x \ (m,n)=1\}| = \sum_{d \le x} \mu(d) \sum_{\substack{m,n \le x \\ d|(m,n)}} 1,
$$

where (m, n) denotes the gcd of m and n.

2. Deduce that

$$
|\{(m,n) \mid 1 \le m, n \le x \ (m,n) = 1\}| = \frac{6}{\pi^2}x^2 + O(x \log x)
$$

for $x \geq 2$.

- 2. Let $f \geq 0$ be an arithmetic function.
	- 1. Suppose that for every integer $k \geq 1$, the Dirichlet series

$$
\sum_{n\geq 1} \frac{f(n)^k}{n^s}
$$

for f^k converges for $\text{Re}(s) > 1$. Prove then that for any $\epsilon > 0$, we have $f(n) \ll n^{\epsilon}$ for $n \geq 1$.

2. Deduce that, for all $\epsilon > 0$, the divisor function d satisfies $d(n) \ll n^{\epsilon}$ for all $n \geq 1$.

In the remainder of this exercise, we give a different proof of the last statement (which can be adapted to other functions).

3. Let $\epsilon > 0$ be given. Prove that there exists a real number P, depending only on ϵ , such that

$$
d(p^v) \le p^{v\epsilon}
$$

for all $p \geq P$ and all integers $v \geq 1$.

4. Deduce that for all $\epsilon > 0$, the divisor function d satisfies $d(n) \ll n^{\epsilon}$ for all $n \geq 1$.

3. Let K be a number field. Let $r_K(n)$ be the arithmetic function defined by

$$
r_K(n) = |\{ \mathbf{n} \subset \mathbb{Z}_K \mid |\mathbf{n}| = n \}|
$$

for all integers $n \geq 1$ (number of integral ideals of norm n).

- 1. Show that $r_K(n)$ is well-defined.
- 2. Show that r_K is a multiplicative function.
- 3. Let $k = [K : \mathbb{Q}]$. Show that for p prime and $v \geq 1$, we have

$$
r_K(p^v) \le |\{(a_1,\ldots,a_k) \mid a_i \ge 0 \text{ and } \sum_i a_i = v\}| \le (v+1)^k.
$$

- 4. Deduce that for all $\epsilon > 0$, we have the bound $r_K(n) \ll n^{\epsilon}$ for all $n \geq 1$. (Hint: use the previous exercise.)
- 4. Let f be an arithmetic function, and suppose that for every prime number p , there exist complex numbers α_p and β_p such that $\alpha_p \beta_p = 1$ and

$$
\sum_{n\geq 1} f(n) n^{-s} = \prod_p (1 - \alpha_p p^{-s})^{-1} (1 - \beta_p p^{-s})^{-1}
$$

for $\text{Re}(s)$ large enough.

1. Show that for all primes p and all integers $v \geq 0$, we have

$$
f(p^v) = \sum_{j=0}^v \alpha_p^j \beta_p^{v-j}.
$$

2. Assume that, for all $\epsilon > 0$, we have $f(n) \ll n^{\epsilon}$ for $n \geq 1$. Let p be a prime number. Show that the power series

$$
\sum_{v\geq 0} f(p^v) X^v
$$

has radius of convergence ≥ 1 , and deduce that $|\alpha_p| = |\beta_p| = 1$.

- 3. Conclude that, under the assumption of the previous question, we have $|f(n)| \leq$ $d(n)$ for all $n \geq 1$.
- **5.** We recall that $\varphi(n) = |(\mathbb{Z})/n\mathbb{Z}|^{\times}$ for all $n \geq 1$.
	- 1. Prove that

$$
\varphi(n) = n \sum_{d|n} \frac{\mu(d)}{d}
$$

for all $n \geq 1$.

2. Prove that

$$
\sum_{n \le x} \varphi(n) = \frac{3}{\pi^2} x^2 + O(x \log x)
$$

for $x \geq 1$.

3. Prove that

$$
\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right),\,
$$

and deduce that $n/\varphi(n) = O(\log n)$ for $n \geq 2$. (Hint: bound it above by $\zeta(2) \sum_{d \leq n} 1/d$.)

- 4. Deduce from problem (5.1) that the function $e(n) = |\{m \ge 1 \mid \varphi(m) = n\}|$ is a well-defined arithmetic function. Show that $\varphi(n)$ is even for all $n \geq 3$, and deduce that the function e is not multiplicative.
- 5. Prove that the Dirichlet series

$$
F(s) = \sum_{n \ge 1} \frac{e(n)}{n^s} = \sum_{m \ge 1} \frac{1}{\varphi(m)^s}
$$

converges absolutely for $\text{Re}(s) > 1$ and that we have in this region an equality

$$
F(s) = \zeta(s)R(s)
$$

where R is a function defined by an infinite product over primes which is holomorphic in the half-plane defined by $\text{Re}(s) > 0$. Does the existence of this factorization contradict the fact that e is not multiplicative?

6. Deduce that F has analytic continuation to the region $\text{Re}(s) > 0$ with a unique simple pole at $s = 1$ with residue

$$
r = \frac{\pi^2}{6} \prod_p \Bigl(1 + \frac{1}{p^3} \Bigr).
$$

Due date: 25.11.2024