D-MATH Prof. Dr. Emmanuel Kowalski

Exercise Sheet 6

1. Using summation by parts, and assuming the prime number theorem in the form

$$\pi(x) = \frac{x}{\log x} + O\Big(\frac{x}{(\log x)^2}\Big)$$

for $x \ge 2$ (where $\pi(x)$ is the number of primes $p \le x$), prove asymptotic formulas (as precise as you can) for

$$\sum_{p \le x} p, \qquad \sum_{p \le x} (\log p)^3.$$

2. For $n \ge 1$, we define $\omega(n)$ to be the number of prime factors of n, counted without multiplicity (so that $\omega(p^2) = 1$ for any prime number p, for instance).

For $x \ge 1$, define

$$\sigma_x = \sum_{p \le x} \frac{1}{p}.$$

1. Using the formula

$$\sum_{n \le x} \frac{\Lambda(n)}{n} = \log x + O(1)$$

for $x \ge 2$, proved in Exercise Sheet 1, Exercise 3, prove that

$$\sigma_x = \log \log x + O(1)$$

for $x \geq 3$.

2. Prove that

$$\sum_{n \leq x} \omega(n) = x \log \log x + O(x)$$

for $x \geq 3$.

3. Let $y = x^{1/2}$ and define

$$\omega'(n) = \sum_{\substack{p|n\\p \le y}} 1.$$

Prove that

$$\omega'(n) \le \omega(n) \le \omega'(n) + 1$$

for all integers $n \leq x$.

4. Prove that

$$\sum_{n \le x} \left(\omega'(n) - \sum_{p \le y} \frac{1}{p} \right)^2 = x\sigma_y + O(x).$$

(Hint: write

$$\omega'(n) - \sum_{p \le y} \frac{1}{p} = \sum_{p \le y} \left(\delta_p(n) - \frac{1}{p} \right),$$

where δ_p is the characteristic function of the integers divisible by p, and then expand the square and handle the various terms separately.)

5. Deduce that

$$\sum_{n \le x} (\omega(n) - \log \log x)^2 = x(\log \log x) + O(x(\sqrt{\log \log x})),$$

for $x \geq 3$. (This is a theorem of Hardy and Ramanujan.)

- 6. Suppose an integer n has size about 10^{100} , and that $\omega(n) = 12$. Is that something remarkable?
- **3.** For $x \ge 1$, define

$$M(x) = \sum_{n \le x} \mu(n)$$

where μ is the Möbius function.

1. Show that for $\operatorname{Re}(s) > 1$, we have the equality

$$\frac{1}{\zeta(s)} = s \int_1^{+\infty} M(t) t^{-s-1} dt.$$

2. Deduce that, if the estimate

$$M(x) = O(x^{\delta})$$

for $x \ge 2$ is true for a certain $\delta > 0$, then $\zeta(s) \ne 0$ for all $s \in \mathbb{C}$ such that $\operatorname{Re}(s) > \delta$.

3. Similarly, prove that if the estimate

$$\sum_{n \le x} \Lambda(n) = x + O(x^{\delta})$$

is valid for some $\delta > 0$, then $\zeta(s) \neq 0$ for all $s \in \mathbb{C}$ such that $\operatorname{Re}(s) > \delta$.

- 4. The ternary divisor function d_3 is defined as the triple Dirichlet convolution $1 \star 1 \star 1$.
 - 1. Compute the Dirichlet generating series D(s) for d_3 and prove that it has meromorphic continuation to $\operatorname{Re}(s) > 0$ with a triple pole at s = 1.
 - 2. Let $\epsilon > 0$ be a real number. Prove that $d_3(n) \ll n^{\epsilon}$ for $n \ge 1$.

3. Let δ be a real number with $0 < \delta < 1$. Prove that

$$D_f(s) \ll (1+|s|)^3$$

for $\operatorname{Re}(s) \ge \delta$ and $|\operatorname{Im}(s)| \ge 1$.

4. Let $\epsilon > 0$ be a real number. Using Mellin transform methods, prove that

$$\sum_{n \le x} d_3(n) = x f(\log x) + O(x^{4/5 + \epsilon})$$

for $x \ge 2$, where f is a polynomial of degree 2 with leading term $X^2/2$.

Due date: 16.12.2024