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Fxercise Sheet 7

1. Let p be a prime number.

1.

Show that for any a € Z, the map ¥,: & — €2™%/P is well-defined on the finite
field F), and is a character of the additive group of I, which depends only on the
class of @ modulo p.

. Let x be a character of the multiplicative group F,. We extend x to F;, by defining

1 if x is the trivial character,
x(0) = :
0 otherwise.

The Gauss sum associated to a € F, and to x is defined by

) = 3 x(@)a(a).

z€Fp

Show that if a # 0 (in ;) and x is non trivial, then |7,(x)| = \/p. Compute also
70(x) and 7,(1) for all y and all a.

Show that if a # 0 and x is non-trivial, then 7,(x) is an integer in the Galois
extension Q(eQm/ P) of QQ; moreover show that it has the property that for any
element o of the Galois group, we have |o(7,(x))| = 1/p-

Let x1 and x2 be characters of F,’, extended to I, as in the previous question.
The associated Jacobi sum is defined by

J(x1,x2) = Y xa(@)xa(l — x).

zelF,
Show that if x1, x2 and x1x2 are all non-trivial, then

1107 (x2)

J(x1,x2) = T 00x3)

(Hint: start with the product of the left-hand side with the Gauss sum in the
denominator, and find a clever change of variable.)

. Let L be the subfield of C generated by the values of x; and those of yo. Show

that L is a finite Galois extension of Q with abelian Galois group.

. If x1 and x2 are distinct, non-trivial, and Y2 is non-trivial, show that the Ja-

cobi sum J(x1,x2) is an integer of L and that for all o € Gal(L/Q), we have

lo(J(x1, x2))| = /P



7. Assume that p = 1 (mod 4). Show that there exist non-trivial characters y; and

X2 of F)' with
X% = 17
X3=1, x3#L

Show that z = J(x1,x2) is an element of Z[i] such that |z|?> = p, and deduce
(again) that p is the sum of two squares of integers.
2. Let p be an odd prime number, and let N, be the number of solutions of the equation
4y +1=0
in [F),.

1. Prove that

aclFy,

2. Deduce that
Ny, =p+J\A),

where A denotes the Legendre symbol viewed as a character of F, .

3. For any non-trivial character x of F’, prove that

JOoox ™t = —x(-1).

4. Deduce that

N — p+1 if p=3mod4,
B p—1 if p=1mod4,

and in particular that N, > 1 for all p.

3. The goal of this exercise is to prove the existence of solutions to the Pell-Fermat
equation without using Dirichlet’s Unit Theorem.

We recall Dirichlet’s Approximation Theorem: given an irrational number o € R, there
are infinitely many rational numbers a/b, with a € Z and b > 1, such that |a — a/b| <
1/b%.

Let d > 1 be an integer which is not a square of an integer, so that v/d is irrational.

1. Show that if (a,b) are integers with b > 1 such that

-

1
797

<
b

then
la — db?| < 1+ 2Vd.



2. Deduce that there exists an integer k£ # 0 such that the equation
2 —dy =k

has infinitely many integer solutions (z,y).

3. Deduce that the equation 2? — dy? = 1 has infinitely many integral solutions.
(Hint: show that the previous question implies that the unit group of ZQ( NG must
be infinite.)

4. Let d be an odd non-zero squarefree integer. We denote by &; the map from prime
numbers coprime to d to {—1, 1} defined for all p{ d by

€a(p) = (*)

p
1. Show that there exists a character x4 of the finite group (Z/4dZ)* such that

£a(p) = xa(p mod 4d)

for all primes p 1 4d.
2. Show that x4 is a non-trivial real character.

3. Let
Sa = {p | dis a square modulo p}.

1 I 1
ZPU—Q;W-FO(U

pESy

Prove that

for all real numbers o > 1. (Hint: express the condition that d is a square modulo
p in terms of &4.)

4. Let k be an arbitrary odd integer and let n(k) > 1 be the number of irreducible
factors of X2 — k as a polynomial in Q[X]. Let v (p) denote the number of roots
of the equation X2 = k in Fp. Prove that

Z”’;@:n(k)zl+0(1)

for all real numbers o > 1.

(This is a special case of Kronecker’s Theorem from Section 1.4 of the lecture notes;
it can be extended without much work to all £ > 1.)

5. The goal of this exercise is to prove a theorem of Lagrange: every integer n > 1 is the
sum of four squares of non-negative integers. Because of the identity

(a® + 0+ + d*)(? + 5* +1* +u®) =
(ar +bs + ct + du)® + (as — br + cu — dt)*+
(at — bu — cr 4 ds)? + (au + bt — cs — dr)?, (1)



(which you can check!), it suffices to prove this when n is a prime number, and this
may be assumed to be odd since p = 2 = 12 4+ 12 + 02 + 0%

1. Show that there exists (a,b) in Z? and an integer m with 1 < m < p such that
mp=a®+b>+1

(Hint: you can use Exercise 2, although there are other more elementary argu-
ments.)

2. We denote by mg the smallest positive integer such that mop = a? + b + ¢ + d?
is a sum of four squares of integers, not all of which are divisible by p. By the
previous question, this exists and we have 1 < mg < p.

3. Show that mg is odd. (Hint: otherwise, show that one can order a, b, ¢, d so that
a+b,a—b, c+dand c—d are even, and then compute the sum of the squares of
these numbers.)

4. We assume that my > 2. Show that not all of (a,b, ¢, d) are divisible by mg, and
that there exist integers 7, s, ¢, u, not all zero, such that

a=rmodmgy, b=smodmgy, c=tmodmgy, d=umodmyg,
mo
2
r? 482 + 12 +u <md,

r? + $2 +t? + u? = 0 mod my.

max(|r], |s], |¢], ul) <

5. Let m; > 1 be such that r2 + s2 + t2 + u? = mgm;. Show that
mim3p = o + % 4+ % 4 62

where «, 3, 7y, 0 are integers divisible by mg. (Hint: use the identity (1).)

6. Obtain a contradiction and deduce that we must have had mg = 1, concluding the
proof.

Vacation exercises — no due date



