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1. Let p be a prime number.

1. Show that for any a ∈ Z, the map ψa : x 7→ e2iπax/p is well-defined on the finite
field Fp and is a character of the additive group of Fp which depends only on the
class of a modulo p.

2. Let χ be a character of the multiplicative group F×
p . We extend χ to Fp by defining

χ(0) =

{
1 if χ is the trivial character,
0 otherwise.

The Gauss sum associated to a ∈ Fp and to χ is defined by

τa(χ) =
∑
x∈Fp

χ(x)ψa(x).

Show that if a ̸= 0 (in Fp) and χ is non trivial, then |τa(χ)| =
√
p. Compute also

τ0(χ) and τa(1) for all χ and all a.

3. Show that if a ̸= 0 and χ is non-trivial, then τa(χ) is an integer in the Galois
extension Q(e2iπ/p) of Q; moreover show that it has the property that for any
element σ of the Galois group, we have |σ(τa(χ))| =

√
p.

4. Let χ1 and χ2 be characters of F×
p , extended to Fp as in the previous question.

The associated Jacobi sum is defined by

J(χ1, χ2) =
∑
x∈Fp

χ1(x)χ2(1− x).

Show that if χ1, χ2 and χ1χ2 are all non-trivial, then

J(χ1, χ2) =
τ1(χ1)τ1(χ2)

τ1(χ1χ2)
.

(Hint: start with the product of the left-hand side with the Gauss sum in the
denominator, and find a clever change of variable.)

5. Let L be the subfield of C generated by the values of χ1 and those of χ2. Show
that L is a finite Galois extension of Q with abelian Galois group.

6. If χ1 and χ2 are distinct, non-trivial, and χ1χ2 is non-trivial, show that the Ja-
cobi sum J(χ1, χ2) is an integer of L and that for all σ ∈ Gal(L/Q), we have
|σ(J(χ1, χ2))| =

√
p.



7. Assume that p ≡ 1 (mod 4). Show that there exist non-trivial characters χ1 and
χ2 of F×

p with {
χ2
1 = 1,

χ4
2 = 1, χ2

2 ̸= 1.

Show that z = J(χ1, χ2) is an element of Z[i] such that |z|2 = p, and deduce
(again) that p is the sum of two squares of integers.

2. Let p be an odd prime number, and let Np be the number of solutions of the equation

x2 + y2 + 1 = 0

in Fp.

1. Prove that
Np =

∑
a∈Fp

(
1 +

(a
p

))(
1 +

(−1− a

p

))
.

2. Deduce that
Np = p+ J(λ, λ),

where λ denotes the Legendre symbol viewed as a character of F×
p .

3. For any non-trivial character χ of F×
p , prove that

J(χ, χ−1) = −χ(−1).

4. Deduce that

Np =

{
p+ 1 if p ≡ 3 mod 4,

p− 1 if p ≡ 1 mod 4,

and in particular that Np ≥ 1 for all p.

3. The goal of this exercise is to prove the existence of solutions to the Pell–Fermat
equation without using Dirichlet’s Unit Theorem.

We recall Dirichlet’s Approximation Theorem: given an irrational number α ∈ R, there
are infinitely many rational numbers a/b, with a ∈ Z and b ≥ 1, such that |α− a/b| ≤
1/b2.

Let d ≥ 1 be an integer which is not a square of an integer, so that
√
d is irrational.

1. Show that if (a, b) are integers with b ≥ 1 such that∣∣∣√d− a

b

∣∣∣ ≤ 1

b2
,

then
|a2 − db2| ≤ 1 + 2

√
d.



2. Deduce that there exists an integer k ̸= 0 such that the equation

x2 − dy2 = k

has infinitely many integer solutions (x, y).
3. Deduce that the equation x2 − dy2 = 1 has infinitely many integral solutions.

(Hint: show that the previous question implies that the unit group of ZQ(
√
d) must

be infinite.)

4. Let d be an odd non-zero squarefree integer. We denote by ξd the map from prime
numbers coprime to d to {−1, 1} defined for all p ∤ d by

ξd(p) =
(d
p

)
.

1. Show that there exists a character χd of the finite group (Z/4dZ)× such that

ξd(p) = χd(p mod 4d)

for all primes p ∤ 4d.
2. Show that χd is a non-trivial real character.
3. Let

Sd = {p | d is a square modulo p}.

Prove that ∑
p∈Sd

1

pσ
=

1

2

∑
p

1

pσ
+O(1)

for all real numbers σ > 1. (Hint: express the condition that d is a square modulo
p in terms of ξd.)

4. Let k be an arbitrary odd integer and let n(k) ≥ 1 be the number of irreducible
factors of X2 − k as a polynomial in Q[X]. Let νk(p) denote the number of roots
of the equation X2 = k in Fp. Prove that∑

p

νk(p)

pσ
= n(k)

∑
p

1

pσ
+O(1)

for all real numbers σ > 1.
(This is a special case of Kronecker’s Theorem from Section 1.4 of the lecture notes;
it can be extended without much work to all k ≥ 1.)

5. The goal of this exercise is to prove a theorem of Lagrange: every integer n ≥ 1 is the
sum of four squares of non-negative integers. Because of the identity

(a2 + b2 + c2 + d2)(r2 + s2 + t2 + u2) =

(ar + bs+ ct+ du)2 + (as− br + cu− dt)2+

(at− bu− cr + ds)2 + (au+ bt− cs− dr)2, (1)



(which you can check!), it suffices to prove this when n is a prime number, and this
may be assumed to be odd since p = 2 = 12 + 12 + 02 + 02.

1. Show that there exists (a, b) in Z2 and an integer m with 1 ≤ m < p such that

mp = a2 + b2 + 1

(Hint: you can use Exercise 2, although there are other more elementary argu-
ments.)

2. We denote by m0 the smallest positive integer such that m0p = a2 + b2 + c2 + d2

is a sum of four squares of integers, not all of which are divisible by p. By the
previous question, this exists and we have 1 ≤ m0 < p.

3. Show that m0 is odd. (Hint: otherwise, show that one can order a, b, c, d so that
a+ b, a− b, c+ d and c− d are even, and then compute the sum of the squares of
these numbers.)

4. We assume that m0 ≥ 2. Show that not all of (a, b, c, d) are divisible by m0, and
that there exist integers r, s, t, u, not all zero, such that

a ≡ r mod m0, b ≡ s mod m0, c ≡ t mod m0, d ≡ u mod m0,

max(|r|, |s|, |t|, |u|) < m0

2
,

r2 + s2 + t2 + u2 < m2
0,

r2 + s2 + t2 + u2 ≡ 0 mod m0.

5. Let m1 ≥ 1 be such that r2 + s2 + t2 + u2 = m0m1. Show that

m1m
2
0p = α2 + β2 + γ2 + δ2

where α, β, γ, δ are integers divisible by m0. (Hint: use the identity (1).)

6. Obtain a contradiction and deduce that we must have had m0 = 1, concluding the
proof.
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