D-MATH Number Theory I 19.12.2024 Prof. Dr. Emmanuel Kowalski

Exercise Sheet 7

- 1. Let p be a prime number.
	- 1. Show that for any $a \in \mathbb{Z}$, the map $\psi_a : x \mapsto e^{2i\pi ax/p}$ is well-defined on the finite field \mathbb{F}_p and is a character of the additive group of \mathbb{F}_p which depends only on the class of a modulo p.
	- 2. Let χ be a character of the multiplicative group \mathbb{F}_p^{\times} . We extend χ to \mathbb{F}_p by defining

$$
\chi(0) = \begin{cases} 1 & \text{if } \chi \text{ is the trivial character,} \\ 0 & \text{otherwise.} \end{cases}
$$

The Gauss sum associated to $a \in \mathbb{F}_p$ and to χ is defined by

$$
\tau_a(\chi) = \sum_{x \in \mathbb{F}_p} \chi(x) \psi_a(x).
$$

Show that if $a \neq 0$ (in \mathbb{F}_p) and χ is non trivial, then $|\tau_a(\chi)| = \sqrt{p}$. Compute also $\tau_0(\chi)$ and $\tau_a(1)$ for all χ and all a.

- 3. Show that if $a \neq 0$ and χ is non-trivial, then $\tau_a(\chi)$ is an integer in the Galois extension $\mathbb{Q}(e^{2i\pi/p})$ of \mathbb{Q} ; moreover show that it has the property that for any element σ of the Galois group, we have $|\sigma(\tau_a(\chi))| = \sqrt{p}$.
- 4. Let χ_1 and χ_2 be characters of \mathbb{F}_p^{\times} , extended to \mathbb{F}_p as in the previous question. The associated *Jacobi sum* is defined by

$$
J(\chi_1, \chi_2) = \sum_{x \in \mathbb{F}_p} \chi_1(x) \chi_2(1-x).
$$

Show that if χ_1 , χ_2 and $\chi_1 \chi_2$ are all non-trivial, then

$$
J(\chi_1, \chi_2) = \frac{\tau_1(\chi_1)\tau_1(\chi_2)}{\tau_1(\chi_1\chi_2)}.
$$

(Hint: start with the product of the left-hand side with the Gauss sum in the denominator, and find a clever change of variable.)

- 5. Let L be the subfield of C generated by the values of χ_1 and those of χ_2 . Show that L is a finite Galois extension of $\mathbb Q$ with abelian Galois group.
- 6. If χ_1 and χ_2 are distinct, non-trivial, and $\chi_1\chi_2$ is non-trivial, show that the Jacobi sum $J(\chi_1, \chi_2)$ is an integer of L and that for all $\sigma \in \text{Gal}(L/\mathbb{Q})$, we have $|\sigma(J(\chi_1,\chi_2))| = \sqrt{p}.$

7. Assume that $p \equiv 1 \pmod{4}$. Show that there exist non-trivial characters χ_1 and χ_2 of \mathbb{F}_p^{\times} with

$$
\begin{cases} \chi_1^2 = 1, \\ \chi_2^4 = 1, \qquad \chi_2^2 \neq 1. \end{cases}
$$

Show that $z = J(\chi_1, \chi_2)$ is an element of $\mathbb{Z}[i]$ such that $|z|^2 = p$, and deduce (again) that p is the sum of two squares of integers.

2. Let p be an odd prime number, and let N_p be the number of solutions of the equation

$$
x^2 + y^2 + 1 = 0
$$

in \mathbb{F}_p .

1. Prove that

$$
N_p = \sum_{a \in \mathbb{F}_p} \left(1 + \left(\frac{a}{p} \right) \right) \left(1 + \left(\frac{-1 - a}{p} \right) \right).
$$

2. Deduce that

$$
N_p = p + J(\lambda, \lambda),
$$

where λ denotes the Legendre symbol viewed as a character of \mathbb{F}_p^{\times} .

3. For any non-trivial character χ of \mathbb{F}_p^{\times} , prove that

$$
J(\chi, \chi^{-1}) = -\chi(-1).
$$

4. Deduce that

$$
N_p = \begin{cases} p+1 & \text{if } p \equiv 3 \bmod 4, \\ p-1 & \text{if } p \equiv 1 \bmod 4, \end{cases}
$$

and in particular that $N_p \geq 1$ for all p.

3. The goal of this exercise is to prove the existence of solutions to the Pell–Fermat equation without using Dirichlet's Unit Theorem.

We recall Dirichlet's Approximation Theorem: *given an irrational number* $\alpha \in \mathbb{R}$, there are infinitely many rational numbers a/b , with $a \in \mathbb{Z}$ and $b \geq 1$, such that $|\alpha - a/b| \leq$ $1/b^2$.

- Let $d \geq 1$ be an integer which is not a square of an integer, so that \sqrt{d} is irrational.
	- 1. Show that if (a, b) are integers with $b \ge 1$ such that

$$
\left|\sqrt{d}-\frac{a}{b}\right|\leq\frac{1}{b^2},
$$

then

$$
|a^2 - db^2| \le 1 + 2\sqrt{d}.
$$

2. Deduce that there exists an integer $k \neq 0$ such that the equation

$$
x^2 - dy^2 = k
$$

has infinitely many integer solutions (x, y) .

- 3. Deduce that the equation $x^2 dy^2 = 1$ has infinitely many integral solutions. (Hint: show that the previous question implies that the unit group of $\mathbb{Z}_{\mathbb{Q}(\sqrt{d})}$ must be infinite.)
- 4. Let d be an odd non-zero squarefree integer. We denote by ξ_d the map from prime numbers coprime to d to $\{-1,1\}$ defined for all $p \nmid d$ by

$$
\xi_d(p) = \left(\frac{d}{p}\right).
$$

1. Show that there exists a character χ_d of the finite group $(\mathbb{Z}/4d\mathbb{Z})^{\times}$ such that

$$
\xi_d(p) = \chi_d(p \bmod 4d)
$$

for all primes $p \nmid 4d$.

- 2. Show that χ_d is a non-trivial real character.
- 3. Let

$$
S_d = \{ p \mid d \text{ is a square modulo } p \}.
$$

Prove that

$$
\sum_{p \in S_d} \frac{1}{p^{\sigma}} = \frac{1}{2} \sum_p \frac{1}{p^{\sigma}} + O(1)
$$

for all real numbers $\sigma > 1$. (Hint: express the condition that d is a square modulo p in terms of ξ_d .)

4. Let k be an arbitrary odd integer and let $n(k) \geq 1$ be the number of irreducible factors of $X^2 - k$ as a polynomial in $\mathbb{Q}[X]$. Let $\nu_k(p)$ denote the number of roots of the equation $X^2 = k \text{ in } \mathbb{F}_p$. Prove that

$$
\sum_{p} \frac{\nu_k(p)}{p^{\sigma}} = n(k) \sum_{p} \frac{1}{p^{\sigma}} + O(1)
$$

for all real numbers $\sigma > 1$.

(This is a special case of Kronecker's Theorem from Section 1.4 of the lecture notes; it can be extended without much work to all $k \geq 1$.)

5. The goal of this exercise is to prove a theorem of Lagrange: every integer $n \geq 1$ is the sum of four squares of non-negative integers. Because of the identity

$$
(a2 + b2 + c2 + d2)(r2 + s2 + t2 + u2) =
$$

(ar + bs + ct + du)² + (as - br + cu - dt)² +
(at - bu - cr + ds)² + (au + bt - cs - dr)², (1)

(which you can check!), it suffices to prove this when n is a prime number, and this may be assumed to be odd since $p = 2 = 1^2 + 1^2 + 0^2 + 0^2$.

1. Show that there exists (a, b) in \mathbb{Z}^2 and an integer m with $1 \leq m < p$ such that

$$
mp = a^2 + b^2 + 1
$$

(Hint: you can use Exercise 2, although there are other more elementary arguments.)

- 2. We denote by m_0 the smallest positive integer such that $m_0 p = a^2 + b^2 + c^2 + d^2$ is a sum of four squares of integers, not all of which are divisible by p . By the previous question, this exists and we have $1 \leq m_0 < p$.
- 3. Show that m_0 is odd. (Hint: otherwise, show that one can order a, b, c, d so that $a + b$, $a - b$, $c + d$ and $c - d$ are even, and then compute the sum of the squares of these numbers.)
- 4. We assume that $m_0 \geq 2$. Show that not all of (a, b, c, d) are divisible by m_0 , and that there exist integers r, s, t, u , not all zero, such that

$$
a \equiv r \mod m_0, \quad b \equiv s \mod m_0, \quad c \equiv t \mod m_0, \quad d \equiv u \mod m_0,
$$

$$
\max(|r|, |s|, |t|, |u|) < \frac{m_0}{2},
$$

$$
r^2 + s^2 + t^2 + u^2 < m_0^2,
$$

$$
r^2 + s^2 + t^2 + u^2 \equiv 0 \mod m_0.
$$

5. Let $m_1 \ge 1$ be such that $r^2 + s^2 + t^2 + u^2 = m_0 m_1$. Show that

$$
m_1 m_0^2 p = \alpha^2 + \beta^2 + \gamma^2 + \delta^2
$$

where α , β , γ , δ are integers divisible by m_0 . (Hint: use the identity (1).)

6. Obtain a contradiction and deduce that we must have had $m_0 = 1$, concluding the proof.

Vacation exercises – no due date