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Solutions: Exercise Sheet 1

1. For a real number x ≥ 0, we define

N(x) = |{(a, b) ∈ Z2 | a2 + b2 ≤ x}|.

The goal of this exercise is to prove the estimate

N(x) = πx+O(x1/2),

for x ≥ 1 (recall that f(x) = O(g(x)) for x ∈ X means that there exists a constant c ≥ 0
such that |f(x)| ≤ cg(x) for all x ∈ X).

1. Show that
N(x) ≤ π(

√
x+

√
2)2

for all x ≥ 0. (Hint: interpret N(x) as the area of a certain union of squares of
side 1, contained in a suitable disc.)
Solution: The value of N(x) is precisely the area of the union N of unit squares
[a, a+1)× [b, b+1) where (a, b) ∈ Z2 and a2+b2 ≤ x, or equivalently ∥(a, b)∥ ≤

√
x

using the Euclidean metric. For each (u, v) ∈ N , there exists (a, b) ∈ Z2 with
a2 + b2 ≤ x and (u, v) ∈ [a, a+ 1)× [b, b+ 1). By the triangle inequality,

∥(u, v)∥ ≤ ∥(a, b)∥+ ∥(u− a, v − b)∥
≤

√
x+ ∥(1, 1)∥

≤
√
x+

√
2.

Thus N is contained in the disc of radius
√
x +

√
2, so that N(x) = Area(N ) ≤

π(
√
x+

√
2)2.

2. Show that
N(x) ≥ π(

√
x−

√
2)2

for all x ≥ 0. (Hint: use a similar idea.)
Solution: As before, N(x) = Area(N ). Let (u, v) be any point with ∥(u, v)∥ ≤√
x−

√
2, and let (a, b) = (⌊u⌋, ⌊v⌋). Then (a, b) ∈ Z2 and by the triangle inequality,

∥(a, b)∥ ≤ ∥(u, v)∥+ ∥(a− u, b− v)∥
≤

√
x−

√
2 + ∥(1, 1)∥

=
√
x−

√
2 +

√
2 =

√
x,

so N contains the square with bottom-left corner (a, b). The point (u, v) is contai-
ned in this square and thus in N , so N contains the disc of radius

√
x−

√
2. Thus

N(x) = Area(N ) ≥ π(
√
x−

√
2)2.



3. Conclude.
Solution: The bounds of the previous two parts show that

−2
√
2
√
x+ 2 ≤ N(x)− πx ≤ 2

√
2
√
x+ 2.

Thus for example |N(x)− πx| ≤ 6
√
x for all x ≥ 1, so that N(x) = πx+O(x).

2. We order the primes in increasing order (pn)n≥1:

2 = p1 < 3 = p2 < 5 = p3 < · · · .

The goal of the exercise is to show that there exist positive constants c′1 and c′2 such
that

c′1n log(n) ≤ pn ≤ c′2n log(n) (1)

for all n ≥ 1.

1. Show that
lim

n→+∞

log(n)

log(pn)
= 1.

(Hint: observe first that π(pn) = n, and then use Chebychev’s estimate.)
Solution: By Chebychev’s estimate, there exist positive constants c1 and c2 such
that

c1
x

log x
≤ π(x) ≤ c2

x

log x
.

Note that π(pn) = n, so applying this estimate to x = pn and taking logarithms
we get that

log c1 + log pn − log log pn ≤ log n ≤ log c2 + log pn − log log pn.

Dividing by log pn, we get

1 +
log c1 − log log pn

log pn
≤ log n

log pn
≤ 1 +

log c2 − log log pn
log pn

.

Taking the limit as n → ∞ (and thus as pn → ∞), we note that log c1
log pn

→ 0,
log c2
log pn

→ 0, and log log pn
log pn

→ 0. Thus the limit of logn
log pn

is bounded above and below
by 1, so it must be 1.

2. Using again Chebychev’s estimate, prove (1).
Solution: Since limn→∞

logn
log pn

= 1, there exist constants d1 and d2 such that for all
n ≥ 1,

d1 ≤
log n

log pn
≤ d2,

or equivalently
1

d2
log n ≤ log pn ≤ 1

d1
log n. (2)



Applying Chebychev’s estimate to x = pn, we get that

c1
pn

log pn
≤ n ≤ c2

pn
log pn

⇒ c1pn ≤ n log pn ≤ c2pn.

The left inequality combined with (2) implies that c1pn ≤ n log pn ≤ 1
d1
n log n, so

that pn ≤ 1
c1d1

n log n. By the same logic on the other side, 1
c2d2

n log n ≤ pn. Taking
c′1 =

1
c2d2

and c′2 =
1

c1d1
completes the proof of (1).

3. Prove that ∑
p≤x

1

p
→ +∞.

More precisely, how large can you get the partial sums∑
p≤x

1

p

to be as x → +∞?
Solution: Write ∑

p≤x

1

p
=

∑
n≤π(x)

1

pn

≥ 1

c′2

∑
n≤π(x)

1

n log n
, by part (2)

≥ 1

c′2

∫ π(x)−1

2

1

u log u
du

=
1

c′2
(log log(π(x)− 1)− log log 2)

≥ 1

2c′2

(
log log

(
c1x

log x

)
− log log 2

)
,

using that log log(n − 1) ≥ 1
2 log logn for all n ≥ 1 and Chebyshev’s estimate.

This in turn is larger than (for example) 1
4c′2

log log x for large enough x. Since
log log x → ∞, so does

∑
p≤x

1
p .

If instead of using the upper bound pn ≤ c′2n log n, we used the lower bound pn ≥
c′1n log n, and applied the same argument, we can show that

∑
p≤x

1
p ≤ d log log x

for some constant d. Thus
∑

p≤x
1
p grows on the order of log log x.

3. We define the von Mangoldt function Λ(n) for integers n ≥ 1 by

Λ(n) =

{
log(p) if n = pk for some prime p and integer k ≥ 1

0 otherwise.



1. Show that for n ≥ 1, we have

n∑
k=1

Λ(k) = O(n).

(Hint: split the sum into the sums over primes, squares of primes, etc, and use
Chebychev’s estimate.)
Solution: The von Mangoldt function Λ(k) is supported on prime powers, so

n∑
k=1

Λ(k) =
∑
pj≤n

log p

=
∑
p≤n

log p

⌊
log n

log p

⌋
≤
∑
p≤n

log n

= π(n) log n ≤ c2
n

log n
log n = c2n,

where the last line follows from Chebychev’s estimate. Thus
∑n

k=1 Λ(k) = O(n).

2. Show that for any integer n ≥ 1, we have

n∑
k=1

log(k) =
∑
p,j

pj≤n

⌊ n
pj

⌋
log(p) =

n∑
k=1

⌊n
k

⌋
Λ(k).

Solution: Writing n! =
∏

p p
vp(n) and recalling the identity that

vp(n) =
∑
pj≤n

⌊
n

pj

⌋
,

we have
n∑

k=1

log k = log(n)

= log

(∏
p

pvp(n)

)
=
∑
p≤n

vp(n) log p

=
∑
pj≤n

⌊
n

pj

⌋
log p,

as desired. For the second equality, note that Λ is supported on prime powers and
is precisely log p when k is a power of p, so this follows by the definition of Λ.



3. Show that
n∑

k=1

log(k) = n log(n) +O(n)

for n ≥ 1. (Hint: compare the sum with an integral.)
Solution: We have ∫ n

2
log(u)du ≤

n∑
k=1

log k ≤
∫ n

1
log(u)du+ log(n+ 1)

⇒ (u log(u)− u|n2 ≤
n∑

k=1

log k ≤ (u log(u)− u|n1 + log(n+ 1)

⇒ n log n− n− 2 log 2 + 2 ≤
n∑

k=1

log k ≤ n log n− n+ 1 + log(n+ 1).

The upper and lower bounds combined imply that |
∑n

k=1 log k − n log n| = O(n),
as desired.

4. Deduce that
n∑

k=1

Λ(k)

k
= log(n) +O(1)

for n ≥ 1, and that ∑
p≤n

log(p)

p
= log(n) +O(1).

(Hint: for the first, combine (1), (2) and (3) and 0 ≤ x− ⌊x⌋ ≤ 1; for the second,
show that the contribution to the first sum of squares and higher powers of primes
is bounded.)
Solution: Note first that

1

n

n∑
k=1

⌊n
k

⌋
Λ(k) =

1

n

n∑
k=1

log k, by part (2)

=
1

n
(n log n+O(n)), by part (3)

= log n+O(1).

The sum we want to evaluate is, however, slightly different. Instead, we have

n∑
k=1

Λ(k)

k
=

1

n

n∑
k=1

n

k
Λ(k)

=
1

n

n∑
k=1

⌊n
k

⌋
Λ(k) +

1

n

n∑
k=1

(n
k
−
⌊n
k

⌋)
Λ(k)

= log n+O(1) +O

(
1

n

n∑
k=1

Λ(k)

)
,



since n
k −

⌊
n
k

⌋
≤ 1. Applying part (1) to the final term completes the argument.

For the second sum, along with the first result for this question, it suffices to show
that ∑

pj≤n
j≥2

log p

pj
= O(1).

Summing first over j via geometric series, we have

∑
p≤n

log p

logp(n)∑
j≥2

1

pj
≤
∑
p≤n

log p
∑
j≥2

1

pj

=
∑
p≤n

log p
1

p(p− 1)

≤
∞∑
k=1

log k

k2
,

noting that for each prime p, log p
p(p−1) ≤

log(p−1)
(p−1)2

, and that we only increase the sum
by further extending to all integers k. But the sum over k is convergent (as seen
for example by comparing log k

k2
to 1

k3/2
), so it is bounded by a constant and thus

O(1), as desired.

4. (Optional but recommended) Using a computer, make a table of sums of three and four
squares, and try to make suitable guesses or conjectures concerning the numbers that
appear, which ones don’t, and how many times an integer n might be a sum of three
or four squares.
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