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Solutions: Exercise Sheet 1

1. For a real number x > 0, we define

N(z) = |{(a,b) € Z* | a®> +b* < z}|.

The goal of this exercise is to prove the estimate
N(z) = 7z + O(z'/?),

for x > 1 (recall that f(z) = O(g(x)) for z € X means that there exists a constant ¢ > 0
such that |f(x)| < cg(z) for all z € X).

1. Show that
N(z) < n(v/z 4+ V2)?
for all z > 0. (Hint: interpret N(x) as the area of a certain union of squares of
side 1, contained in a suitable disc.)
Solution: The value of N(x) is precisely the area of the union N of unit squares
[a,a+1) x [b,b+1) where (a,b) € Z? and a?+b* < z, or equivalently ||(a,b)|| < v/z
using the Euclidean metric. For each (u,v) € N, there exists (a,b) € Z? with
a? +b? <z and (u,v) € [a,a + 1) x [b,b+ 1). By the triangle inequality,
[[(w, )| < [(@; D)} + (v = a,v = b
< Va4,
<V + V2.
Thus N is contained in the disc of radius \/z 4+ v/2, so that N(x) = Area(N) <
(VT +/2)2.
2. Show that
N(z) 2 m(vF - V2)?
for all > 0. (Hint: use a similar idea.)

Solution: As before, N(z) = Area(N). Let (u,v) be any point with |[(u,v)| <
VT—+/2,and let (a,b) = (|u], |v]). Then (a,b) € Z? and by the triangle inequality,
(@, D) < [(w, ) [| + (@ = u, b = V)]
< Vo= V241

= Vo - V2+ V2=V,
so NV contains the square with bottom-left corner (a,b). The point (u,v) is contai-

ned in this square and thus in V', so A contains the disc of radius v/z — v/2. Thus
N(z) = Area(N) > 7(v/x — V/2)2



3. Conclude.
Solution: The bounds of the previous two parts show that

—2V2/x +2 < N(z) — 7 < 2v2/x + 2.

Thus for example |N(x) — mx| < 64/z for all x > 1, so that N(z) = 7z + O(x).

2. We order the primes in increasing order (pp)n>1:

2=p1 <3 =pa<dH=p3<---.

The goal of the exercise is to show that there exist positive constants ¢} and ¢, such
that
cinlog(n) < p, < chnlog(n) (1)

for all n > 1.

1. Show that
log(n)
11m
n—+oc log(py,)

(Hint: observe first that w(p,,) = n, and then use Chebychev’s estimate.)

Solution: By Chebychev’s estimate, there exist positive constants ¢; and co such
that

<m(z) < co

“ log logz’

Note that 7(p,) = n, so applying this estimate to x = p,, and taking logarithms
we get that

log ¢1 + log p,, — loglog p, < logn < logco + log p, — loglog p,,.
Dividing by log p,,, we get

log c; — loglog p, - logn log co — loglog p,,

1+ <1

log pn ~ logpn — log .
Taking the limit as n — oo (and thus as p, — o0), we note that llggg;; — 0,
llgg—cz — 0, and lolglw — 0. Thus the limit of llogn is bounded above and below
2 Pn og pn og pn

by 1, so it must be 1.
2. Using again Chebychev’s estimate, prove (1).

Solution: Since lim,, s ﬁ)oggpz = 1, there exist constants d; and dy such that for all
n>1,
logn
di < 2% < g,
log pn,

or equivalently

1 1
—logn <logp, < — logn. (2)
d2 dl



Applying Chebychev’s estimate to x = p,,, we get that

Pn

1 <n< e
log pp, log pn,

= Cc1pn < nlogpn < capn.-

Cc

The left inequality combined with (2) implies that ¢ip, < nlogp, < énlog n, so

that p, < ﬁn log n. By the same logic on the other side, ﬁn logn < p,. Taking
1 1
cady cidy

3. Prove that

A
Cl_

completes the proof of (1).

Z;—>+oo.

I
and ¢, =

More precisely, how large can you get the partial sums

s

p<z
to be as £ — +00?
Solution: Write
Y=
p<z p n<r(x) Pn
LS L by part (2)
— , ar
~ 4, nlogn yp
n<m(zx)

1 w(z)—1 1
> — / du
ch Jo ulogu

1
= 7 (loglog(r(x) — 1) — loglog 2)
2

1
> — <log10g (Clx) — loglog 2> ,
2¢;, log

using that loglog(n — 1) > %log logn for all n > 1 and Chebyshev’s estimate.
This in turn is larger than (for example) ﬁ loglog z for large enough z. Since
2

1
p<z p°
If instead of using the upper bound p, < ¢hnlogn, we used the lower bound p,, >
cinlogn, and applied the same argument, we can show that > % < dloglogx

loglog x — oo, so does >

p<z

for some constant d. Thus > % grows on the order of loglog x.

p<w

3. We define the von Mangoldt function A(n) for integers n > 1 by

An) log(p) if n = p* for some prime p and integer k > 1
n)=
0 otherwise.



1. Show that for n > 1, we have

(Hint: split the sum into the sums over primes, squares of primes, etc, and use
Chebychev’s estimate.)

Solution: The von Mangoldt function A(k) is supported on prime powers, so

D A(R) =) logp
k=1

pi<n

=m(n)logn < co

logn = can,
logn

where the last line follows from Chebychev’s estimate. Thus >~ ;_, A(k) = O(n).

2. Show that for any integer n > 1, we have

élog(k) = L%J log(p) = Y| 7 | Ah).

p.J
p’<n

Solution: Writing n! = Hp p?(") and recalling the identity that

we have

Z log k = log(n)
k=1

= ]og (H p”p(”))
= 3 vp(n) o

p<n
=5 | 5 e
pi<n s

as desired. For the second equality, note that A is supported on prime powers and
is precisely log p when k is a power of p, so this follows by the definition of A.



3. Show that .
> “log(k) = nlog(n) + O(n)
k=1

for n > 1. (Hint: compare the sum with an integral.)

Solution: We have

/ log(u)du < Zlogk < / log(u)du + log(n + 1)

2 k=1 1

n
= (ulog(u) —uly < Zlogk < (ulog(u) — u|} + log(n + 1)
k=1

n
= nlogn —n—2log2+2 < Zlogk <nlogn—n+1+log(n+1).
k=1

The upper and lower bounds combined imply that |y, logk — nlogn| = O(n),
as desired.

4. Deduce that

3

A(k)
k=1 k

=log(n) + O(1)

for n > 1, and that

log;)(p) = log(n) + O(1).

p<n

(Hint: for the first, combine (1), (2) and (3) and 0 < z — |z] < 1; for the second,
show that the contribution to the first sum of squares and higher powers of primes
is bounded.)

Solution: Note first that

2 2 ()40 = 3ok, by pat 2
k=1 k=1

1
= ﬁ(nlogn + O(n)), by part (3)
=logn + O(1).

The sum we want to evaluate is, however, slightly different. Instead, we have

kel
k=1

k=1 n =
AT w15 G- 5]



since 7 — L%J < 1. Applying part (1) to the final term completes the argument.

For the second sum, along with the first result for this question, it suffices to show

that 1
3 252 o).
P <n P
22

Summing first over j via geometric series, we have

log,,(n) 1 1
Stogp 3 L < lmpy
p<n Jj=2 p<n Jj=2

= log et
= el —1)
oo
log k
SZ k2’
k=1
log p log(p—1)

noting that for each prime p, Po1) < -T2 and that we only increase the sum

by further extending to all integers k. But the sum over k is convergent (as seen

for example by comparing l(;cgzk to k31/2)’ so it is bounded by a constant and thus

O(1), as desired.

4. (Optional but recommended) Using a computer, make a table of sums of three and four
squares, and try to make suitable guesses or conjectures concerning the numbers that
appear, which ones don’t, and how many times an integer n might be a sum of three
or four squares.
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