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Prof. Dr. Emmanuel Kowalski

Exercise Sheet 2

1. Let f € Z[X] be a non-constant polynomial. Let p be a prime number and o € Z a
root of f modulo p, so that f(a) = 0 mod p. The goal of this exercise is to prove one
form of what is known as Hensel’s lemma, which gives ways to “lift” roots of f modulo
primes to roots modulo higher powers.

1. For any integer k¥ > 1 and any 8 € Z, prove that
Fla+p"8) = f(e) +p*Bf () mod p™*.

Solution: The identity we want to prove is additive, so it suffices to prove it for
monomials; that is, polynomials of the form f(X) = ¢X" for ¢ € Z and n € N,
where n may be 0. Then

fla+p*8) =cla+p*B8)"  (mod p*!), by definition

=ca"+c g <n,>pjkﬁjoz”_j (mod p**1), by the binomial theorem.
: J
Jj=1

If k> 1, then for any j > 2, p® =0 mod p**!. Thus all terms in the sum vanish
except for the 7 = 1 term, so that

fla —i—pkﬁ) = ca” + enp®Ba” ! (mod pkH)
= f(a) +p*Bf(a) (mod p™*1),

as desired.
2. If p does not divide f’(«), prove that there exists § € Z such that f(a + pB) =
0 mod p?, and that 3 is unique modulo p.

Solution: Since f(a) =0 mod p, there exists some m € Z with f(«) = pm. Then
by part (1), for all 5 € Z,

fla+pB)= f(a)+pBf'(a) (mod p?)
= p(m+ Bf'(a)) (mod p?).

If m+ Bf'(a) = 0 mod p, then p(m + Bf'(a)) = 0 mod p?. Since f'(a) # 0
mod p, it has an inverse modulo p; choosing any 3 € Z with 8 = —mf'(a)!
mod p will satisfy the desired constraint, and thus satisfy f(a +pB) =0 mod p?.
If 8% —mf'(a)~! mod p, then m+Bf'(a) Z0 mod p. But in this case f(a+pgB)
is a nonzero multiple of p modulo p?, and in particular f(a + pB) # 0 mod p?.
Thus S is uniquely determined modulo p.



3. If p does not divide f’(«), prove that for any k > 1, there exists a unique root ay
of f in Z/p*7Z such that a3, = a mod p. Show also that oy = oy, mod p* if I > k.
Solution: We proceed by induction, with the base case being that « is the unique
root aq of f modulo p satisfying oy = @ mod p.

Assume that there exists a unique root ay of f in Z/p*Z such that ap = o mod p.
We would like to construct the unique root oy, € Z/p*1Z. Let dp € Z be the
representative of oy, mod pF with 0 < aj, < p”.

By part (1), we have for all § € Z that

fd +p"B) = f(dy) + p*Bf (dk) mod pFT.
Since ay, is a root of f mod p¥, we have p¥|f(ay); write f(dx) = mp®. Then
F(a +p"B) = p*(m+ Bf'(dx)) mod p**.

As in part (2), the right-hand side is 0 mod p**! if and only if m + Bf'(dx) = 0
mod p, which holds for a unique value 8 mod p since f'(ai) Z0 mod p. Call this
value (35 and define

Qjy1 = g + PP mod pFt.

By construction, f(agr1) =0 mod pF™! and ay; = o, = a mod p. Moreover,

by the uniqueness of oy we must have agy1 = o mod pP; if not, a1 mod PP
would be a second root of f mod p. But then the uniqueness of ay4; follows by
the uniqueness of Sj.

It remains to show that for ¢ > k, ay = a;, mod p”*. This follows inductively as
well, since we have shown above that ay is unique and that ax,1; = a; mod PP
for all k.

4. Find the unique element o € Z/173Z such that o> = —1 and a =4 mod 17.

Solution: Define f(X) € Z[X] via f(X) = X? + 1. Note that f/(X) = 2X # 0
mod 17.

First note that 4 satisfies f(4) = 17 =0 mod 17.. We can follow the algorithm of
parts (2) and (3), noting that f/(4) = 8. Thus for all # mod 17,

f(4+178) = f(4) + 178f'(4) mod 17
=17(1+88) mod 172
We have 1+ 858 =0 mod 17 if and only if 5 =2 mod 17, so choosing 8 = 2 we
have f(az) =0 mod 172 for ap = 4+ 2 % 17 = 38 mod 172. Note that f(38) =
1445 = 5% 172,
We now repeat. For all 5 mod 17,

f(38 +1728) = f(38) + 1726/ (38) mod 173
=17%(5+ f/(38)8) mod 17°.
We have 5+ f/(38)3 =0 mod 17 if and only if 5+ f/(4)8 =5+88 =0 mod 17,

which occurs if and only if # = 10 mod 17. Thus a3 mod 172 given by ag =
38 + 10 x 172 = 2928 satisfies a3 = —1 mod 17°.



2. Let p be an odd prime number.

1. For a € Z/pZ, show that
(2) = qP~1/2 mod p.
p
(Hint: note that the right-hand side is always 0, 1 or —1, then distinguish cases
according to the value of the Legendre symbol.)

Solution: Assume first that (%) =0. Then a =0 mod p, so a® /2 =0 mod p,
and equality holds.

Now assume that <%) = 41. Consider the polynomial f(X) = X?~!—1. Note that

for all @ 2 0 mod p, a?~! = 1 mod p, since (Z/pZ)* is a group of order p — 1.
Thus every nonzero a mod p is a root of f mod p. The polynomial f factors as
f(X) = (x@®=D/2 _1)(x@-D/2 £ 1),

If <%) =1, then for some b mod p, b*> = a. Then
a? V2 =p=1 =1 mod p,

so in this case (%) = a®1/2 mod p, and a is a root of XP~1/2_1 mod p. There

are precisely (p — 1)/2 squares mod p and at most (p — 1)/2 roots of XP~1)/2 1
mod p, so the roots of X®1/2 — 1 mod p must be precisely the squares mod
p. Thus the roots of X®=1/2 41 must be precisely the remaining values (that

is, nonsquares) mod p, so if (%) = —1, we have a®1/2 = —1 mod p, which
completes the argument.

2. Let a be coprime to p. For 1 < b < (p —1)/2, let €¢(b) € {—1,1} and r(b) €
{1,...,(p — 1)/2} be defined by the conditions that ab = €(b)r(b) mod p. Show
that €(b) and r(b) are uniquely defined and that the map r is injective. Deduce
that

((p = 1)/2)la? D" = (=1)*((p — 1)/2)! mod p,
where p is the number of integers b such that €(b) = —1.

Solution: Here we fix a coprime to p.
The map {—1,1} x {1,...,(p — 1)/2} — (Z/pZ)* given by (e,7) — er mod p

is bijective, since the values where e = 1 map bijectively onto {1,...,(p —1)/2}
and the values where ¢ = —1 map bijectively onto {—1,...,—(p —1)/2} = {p —
1,...,p—(p—1)/2} mod p; together these are precisely all nonzero values modulo

p. Thus the values €(b) and r(b) are uniquely defined.

We now show that r is injective (and thus bijective, since it is a map from
{1,...,(p—1)/2} to itself). Let b; and b2 be two values between 1 and (p —1)/2
and assume that r(by) = r(bz); call this value r. Then ab; = €(by)r mod p, so
abie(by) =r mod p and similarly abae(b2) =7 mod p. But then

abie(by) = abae(by) mod p
= a(bie(by) — bae(b2)) =0 mod p
= b1e(by) — bee(ba) =0 mod p, since ged(a,p) =1
= b1 = €(by)e(b2)ba  mod p.



Note that €(by)e(ba) = £1. Since each b; satisfies 1 < b; < (p — 1)/2, by Z —be
mod p. But then by = by mod p, so by = bs.

In order to deduce the desired equality we take the product over ab for all 1 < b <
(p—1)/2. We have

(p—1)/2

I o= ((p—1)/2)a®D"2

b=1

by definition of the factorial, but also

(p—1)/2 (r—1)/2 (p—1)/2 (p—1)/2
H ab = H e(b)r(b) = H e(b) H r(b) mod p.
b=1 b=1 b=1 b=1

Since r is bijective, the product over r(b) is also equal to ((p—1)/2)!. The product
over €(b) has precisely p values of (—1) and (p — 1)/2 — p values of 1, so the
expression above is congruent to (—1)*((p — 1)/2)!, as desired.

3. Deduce that (a/p) = (—1)*. (This is known as “Gauss’s Lemma”.)
Solution: Since ((p — 1)/2)! is relatively prime to p, the previous question implies
that

aP= /2 = (=1)* mod p.

By part (1), a?~1/? = (a/p) mod p, so (a/p) = (~1)*.

4. Show that (2/p) = 1if p = 1,7 mod 8 and (2/p) = —1 otherwise. (Hint: use Gauss’s
Lemma, and consider the classes modulo 8 separately if needed to compute u.)
Solution: By Gauss’s Lemma, (2/p) = (—1)#, where p is the number of integers

bell, %] such that 2b € [p;rl,p — 1], or equivalently such that b € [%, %]

If p=3 mod 4, then % is an integer, so

p—1 p+1 p+1
= — 1:7
= I 1
which is even if p =7 mod 8 and odd if p =3 mod 8. If p=1 mod 4, then%

is not an integer and b € 24+, 221] if and only if b € [%, L], Thus

which is even if p=1 mod 8 and odd if p =5 mod 8.
Thus p is even if p = 1,7 mod 8 and odd if p = 3,5 mod 8, so (2/p) = (—1)* is 1
if p=1,7 mod 8 and (2/p) = —1 if p = 3,5 mod 8.

3. For n > 1, we denote by F,, the finite set of rational numbers of the form a/b where a
and b are coprime and 0 < a < b < n.



1. Write down Fj as an ordered list of rational numbers. Do you notice anything
about either successive elements x < y of this list, or triples of successive elements
T<y<z?

Solution:

1’5°4’3°572’5°3’4’5° 1

This question will show that successive elements have relatively prime denomina-
tors, and that for successive elements a/b < ¢/d < e/ f,

01112132341
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c a-+e
d b+ f

2. Let z = a/b be an element of F,,, with the conditions 1 < a < b < n, and a coprime
to b. Show that there exists integers ¢ and d such that bc — ad = 1, ¢ and d are
coprime and

0<n—-b<d<n.

(Hint: start with any solution of bc —ad = 1, and adapt it to satisfy the inequality.)

Solution: Since ged(a,b) = 1, by (for example) the Euclidean algorithm, there exist
integers ¢ and d such that

bc —ad = 1.
Interpreting this equation as a linear combination of ¢ and d, we see that ged(c, d)|(be—
ad), and thus ged(e,d) = 1 for any such pair ¢ and d.
Note that if be—ad = 1, then b(c+a)—a(d+b) = 1 and similarly b(c—a)—a(d—b) =
1. Thus for any d’ = d mod b, there exists some ¢’ with b’ — ad’ = 1. Choosing d’
to be the representative of d mod b with n — b < d < n gives the desired solution.

3. If a/b < 1, show that ¢/d € F,, and

>
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Let e/f be the next element after a/b in F),. Show that ¢/d > e/f, and that if
c/d>e/f,thenc/d—e/f >1/(df) and e/f —a/b>1/(bf).

Solution: Since ¢ and d are coprime, we need only show that 0 < ¢ < d < n in
order to show that § € F,. Since 0 < n —b < d < n, it remains only to show that
0 < ¢ < d, or equivalently that 0 < ¢/d < 1.

We can rearrange the identity bc — ad + 1 to get

c a 1
o tw (1)
Since%<1,%<1—%,so
c a 1 1 1
S A |
d b+db_ b+db_’

so ¢/d € F,. Equation (1) also implies immediately that ¢/d > a/b, and in fact
that ¢/d > a/b.



Let e/ f be the next element after a/b in F,,. Since ¢/d > a/b is in F,,, by definition
of e/ f we must have ¢/d > e/ f. Assume that ¢/d > e/f. Then

c e cf —de
d f  df
so ¢f —de > 0 and thus c¢f — de > 1, which implies that ¢/d —e/f > 1/(df). By
the same argument, e/f —a/b > 1/(bf).
4. Deduce that ¢/d = e/f and that be — af = 1. (Hint: argue by contradiction using
the two previous questions.)

Solution: Assume not. Then by part (3), ¢/d > e/ f. Then part (3) implies that

bc—ad ¢ a c e e a 1 1 b+d
=-—z=\s—=|*+tl\lv—"F)Z25+F="7
bd d b d f f b df = bf bdf
Clearing denominators from the far left and far right and applying the inequality
from part (2) that d > n — b, we get that

> 0,

b+d _ b+n—->b n
bc — ad > > =—>1,
f f f
where the last inequality follows since e/ f € F,, and thus f < n. But then be—ad >
1, which is a contradiction; thus ¢/d = e/ f, so by part (2) we have be — af = 1.

5. Show that if a/b < ¢/d < e/ f are three successive elements in Fj,, then

c a-+e

d b+ f

(Hint: use twice the previous result, and compute ¢ and d in terms of the other
quantities.)

Solution: By the previous part we have bc — ad = 1 and de — ¢f = 1. Thus

bc — ad = de — cf

= bc+cf =de+ad

=cb+ f)=d(a+e)
a+e

= 2 = m, as desired.

(The set F, is called the set of Farey fractions of order n; Farey himself did not have
anything to do with proving the properties above.)

4. The goal of this exercise is to prove that 72 is irrational. For n > 0, let

fr = M e Q[X].

n!



1. Show that for all n > 1 and j > 0, we have f}tj)(O) € Z and féj)(l) €Z.
Solution: We have f,(x) = rn(@)n(@) here rn(x) = 2™ and s,(x) = (1 —x)". For

n!

each j > 0, by the product rule,

7 an()’ 97 (@) (2)

(This is a generalization of the product rule which can be proven by induction).
Then r) (z) = —22"~ for i < n and 0 otherwise, and 37(;)(3;) = (—1)iL!,)(1 —

 (n—)! (n—1)!

x)"~* for i < n and 0 otherwise.

Consider first the case when z = 0. Then rg) (x) = 0 unless i = n, so that
f,(f)(()) =0 when 0 < j <n—1and for n <j < 2n we have

J .
10 =33 (1) osg0
“is0 2

=L ()00
(

N\ nl . !
~7> %(_1)(3—70”7(1 _ Q)i

I\ pyG-m_ "
2 Gy

Noting that 2n — 7 < n since 7 > n, this expression is an integer. Finally, for

n!\n (2n — j)!

Il
N

n > 2j+ 1, every term in (2) is 0, so f,sj)(a:) = 0 for these values.

A similar computation for x = 1 shows that féj)(l) =0when 0 <j<n-—1or
when j > 2n + 1, and that for n < j < 2n,

R G [

n (2n — j)!

. Suppose that 72 = a/b where a and b are coprime positive integers. For n > 1,
define g, : [0,1] — R by

n

gn(x) =" Y (1Y D [ (x).

J=0

Show that ¢, (0) € Z and g,(1) € Z.

Solution: We can write
- 1)ipe @y N dpi =i £(29)
=S (5) T @) = D (e (@),
J=0 J=0

By part (1), T(ZQj)(O) € Z and f,(lzj)(l) € Z for all j > 0, so when x = 0 or 1, every
term in the sum for g, is an integer, and thus g,(0) € Z and g, (1) € Z.



3. Show that .
gn(0) + gn(1) = 7r/ a" sin(mz) f(x)dx.
0

(Hint: compute a primitive of z — a" sin(rz) f,(z) in terms of g,.)
Solution: Define F(z) = g/,(z) sin(mx) — gn ()7 cos(mz). Then

F'(z) = ¢/(z) sin(nz) + ¢, ()7 cos(nz) — ¢, (z)m cos(mz) + gn(z)n? sin(rz)

n

= sin(7wz)b" Z(—l)kWQ(”_k) (2(k+1)) +Z 2(n_j+1)fr(z2j)(33)

k=0
= b"sin(ra) | 7200 f () + Y ((~17 AT (@) + (<1 R0 £ (@)
j=1

where in the last line we have isolated the j = 0 term from the second term,
transformed the first sum via the substitution j = k+ 1, and discarded derivatives
of f higher than the 2nth derivative, at which point all derivatives of f are 0. The
terms in the sum are all 0, so we get

F'(x) = b"sin(ra) w2 £, ()
= 72a" sin(7x) f ().

Thus 1 F(z) is the antiderivative of ra™ sin(mz) f,(z), so that

1
77/0 a" sin(wx) fn(z)dx = %(F(l) — F(0))
= (g}, (1) sin() — ga(1)m cos(r) — g4(0) in(0) + g (0} cos(0)
= gn(o) + gn(l)a
as desired.
4. Show that

n

0< gn(o) + gn(l) < %

for all n > 1, and conclude.
Solution: For all 0 < z < 1, we have f,(z) = 33"(27—'3:)” < L and that f,(z) is

nonnegative. The function sin(mz) also satisfies 0 < sin(nz) < 1 in the range
x €1]0,1], so
1 Ta™
0< 71/0 a" sin(mzx) fr(x)de < wa™ —dx =

Note also that sin(rz) = 0 if and only if x = 0 or x = 1 in this range, and the
same is true for f,(x); thus the integral is nonzero. Also, sin(rz) < 1 for nearly
the entire interval, so similarly the upper bound must be a strict upper bound.
Combining this with part (3) completes the proof that 0 < g,(0) + gn (1) <
all n > 1. Since ¢,(0) + g, (1) € Z by part (2), this implies in turn that ™% > 1 for
all n > 1. But for any fixed a, this quantity approaches 0 as n — oo, bO we have

reached a contradiction.
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