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Exercise Sheet 2

1. Let f ∈ Z[X] be a non-constant polynomial. Let p be a prime number and α ∈ Z a
root of f modulo p, so that f(α) ≡ 0 mod p. The goal of this exercise is to prove one
form of what is known as Hensel’s lemma, which gives ways to “lift” roots of f modulo
primes to roots modulo higher powers.

1. For any integer k ≥ 1 and any β ∈ Z, prove that

f(α+ pkβ) ≡ f(α) + pkβf ′(α) mod pk+1.

Solution: The identity we want to prove is additive, so it suffices to prove it for
monomials; that is, polynomials of the form f(X) = cXn for c ∈ Z and n ∈ N,
where n may be 0. Then

f(α+ pkβ) ≡ c(α+ pkβ)n (mod pk+1), by definition

≡ cαn + c

n∑
j=1

(
n

j

)
pjkβjαn−j (mod pk+1), by the binomial theorem.

If k ≥ 1, then for any j ≥ 2, pjk ≡ 0 mod pk+1. Thus all terms in the sum vanish
except for the j = 1 term, so that

f(α+ pkβ) ≡ cαn + cnpkβαn−1 (mod pk+1)

≡ f(α) + pkβf ′(α) (mod pk+1),

as desired.

2. If p does not divide f ′(α), prove that there exists β ∈ Z such that f(α + pβ) ≡
0 mod p2, and that β is unique modulo p.
Solution: Since f(α) ≡ 0 mod p, there exists some m ∈ Z with f(α) = pm. Then
by part (1), for all β ∈ Z,

f(α+ pβ) ≡ f(α) + pβf ′(α) (mod p2)

≡ p(m+ βf ′(α)) (mod p2).

If m + βf ′(α) ≡ 0 mod p, then p(m + βf ′(α)) ≡ 0 mod p2. Since f ′(α) ̸≡ 0
mod p, it has an inverse modulo p; choosing any β ∈ Z with β ≡ −mf ′(α)−1

mod p will satisfy the desired constraint, and thus satisfy f(α+ pβ) ≡ 0 mod p2.
If β ̸≡ −mf ′(α)−1 mod p, then m+βf ′(α) ̸≡ 0 mod p. But in this case f(α+pβ)
is a nonzero multiple of p modulo p2, and in particular f(α + pβ) ̸≡ 0 mod p2.
Thus β is uniquely determined modulo p.



3. If p does not divide f ′(α), prove that for any k ≥ 1, there exists a unique root αk

of f in Z/pkZ such that αk ≡ α mod p. Show also that αl ≡ αk mod pk if l ≥ k.
Solution: We proceed by induction, with the base case being that α is the unique
root α1 of f modulo p satisfying α1 ≡ α mod p.
Assume that there exists a unique root αk of f in Z/pkZ such that αk ≡ α mod p.
We would like to construct the unique root αk ∈ Z/pk+1Z. Let α̃k ∈ Z be the
representative of αk mod pk with 0 ≤ α̃k < pk.
By part (1), we have for all β ∈ Z that

f(α̃k + pkβ) ≡ f(α̃k) + pkβf ′(α̃k) mod pk+1.

Since αk is a root of f mod pk, we have pk|f(α̃k); write f(α̃k) = mpk. Then

f(α̃k + pkβ) ≡ pk(m+ βf ′(α̃k)) mod pk+1.

As in part (2), the right-hand side is 0 mod pk+1 if and only if m + βf ′(α̃k) ≡ 0
mod p, which holds for a unique value β mod p since f ′(α̃k) ̸≡ 0 mod p. Call this
value βk and define

αk+1 := α̃k + pkβk mod pk+1.

By construction, f(αk+1) ≡ 0 mod pk+1 and αk+1 ≡ αk ≡ α mod p. Moreover,
by the uniqueness of αk we must have αk+1 ≡ αk mod pk; if not, αk+1 mod pk

would be a second root of f mod p. But then the uniqueness of αk+1 follows by
the uniqueness of βk.
It remains to show that for ℓ ≥ k, αℓ ≡ αk mod pk. This follows inductively as
well, since we have shown above that αk is unique and that αk+1 ≡ αk mod pk

for all k.
4. Find the unique element α ∈ Z/173Z such that α2 = −1 and α ≡ 4 mod 17.

Solution: Define f(X) ∈ Z[X] via f(X) = X2 + 1. Note that f ′(X) = 2X ̸≡ 0
mod 17.
First note that 4 satisfies f(4) = 17 ≡ 0 mod 17.. We can follow the algorithm of
parts (2) and (3), noting that f ′(4) = 8. Thus for all β mod 17,

f(4 + 17β) ≡ f(4) + 17βf ′(4) mod 172

≡ 17(1 + 8β) mod 172.

We have 1 + 8β ≡ 0 mod 17 if and only if β ≡ 2 mod 17, so choosing β = 2 we
have f(α2) ≡ 0 mod 172 for α2 ≡ 4 + 2 ∗ 17 = 38 mod 172. Note that f(38) =
1445 = 5 ∗ 172.
We now repeat. For all β mod 17,

f(38 + 172β) ≡ f(38) + 172βf ′(38) mod 173

≡ 172(5 + f ′(38)β) mod 173.

We have 5 + f ′(38)β ≡ 0 mod 17 if and only if 5 + f ′(4)β ≡ 5 + 8β ≡ 0 mod 17,
which occurs if and only if β ≡ 10 mod 17. Thus α3 mod 173 given by α3 =
38 + 10 ∗ 172 = 2928 satisfies α2

3 ≡ −1 mod 173.



2. Let p be an odd prime number.

1. For a ∈ Z/pZ, show that (a
p

)
≡ a(p−1)/2 mod p.

(Hint: note that the right-hand side is always 0, 1 or −1, then distinguish cases
according to the value of the Legendre symbol.)

Solution: Assume first that
(
a
p

)
= 0. Then a ≡ 0 mod p, so a(p−1)/2 ≡ 0 mod p,

and equality holds.
Now assume that

(
a
p

)
= ±1. Consider the polynomial f(X) = Xp−1−1. Note that

for all a ̸≡ 0 mod p, ap−1 ≡ 1 mod p, since (Z/pZ)× is a group of order p − 1.
Thus every nonzero a mod p is a root of f mod p. The polynomial f factors as
f(X) = (X(p−1)/2 − 1)(X(p−1)/2 + 1).

If
(
a
p

)
= 1, then for some b mod p, b2 ≡ a. Then

a(p−1)/2 ≡ bp−1 ≡ 1 mod p,

so in this case
(
a
p

)
≡ a(p−1)/2 mod p, and a is a root of X(p−1)/2−1 mod p. There

are precisely (p− 1)/2 squares mod p and at most (p− 1)/2 roots of X(p−1)/2 − 1
mod p, so the roots of X(p−1)/2 − 1 mod p must be precisely the squares mod
p. Thus the roots of X(p−1)/2 + 1 must be precisely the remaining values (that
is, nonsquares) mod p, so if

(
a
p

)
= −1, we have a(p−1)/2 ≡ −1 mod p, which

completes the argument.
2. Let a be coprime to p. For 1 ≤ b ≤ (p − 1)/2, let ϵ(b) ∈ {−1, 1} and r(b) ∈

{1, . . . , (p − 1)/2} be defined by the conditions that ab ≡ ϵ(b)r(b) mod p. Show
that ϵ(b) and r(b) are uniquely defined and that the map r is injective. Deduce
that

((p− 1)/2)!a(p−1)/2 ≡ (−1)µ((p− 1)/2)! mod p,

where µ is the number of integers b such that ϵ(b) = −1.
Solution: Here we fix a coprime to p.
The map {−1, 1} × {1, . . . , (p − 1)/2} → (Z/pZ)× given by (ϵ, r) 7→ ϵr mod p
is bijective, since the values where ϵ = 1 map bijectively onto {1, . . . , (p − 1)/2}
and the values where ϵ = −1 map bijectively onto {−1, . . . ,−(p − 1)/2} ≡ {p −
1, . . . , p−(p−1)/2} mod p; together these are precisely all nonzero values modulo
p. Thus the values ϵ(b) and r(b) are uniquely defined.
We now show that r is injective (and thus bijective, since it is a map from
{1, . . . , (p− 1)/2} to itself). Let b1 and b2 be two values between 1 and (p− 1)/2
and assume that r(b1) = r(b2); call this value r. Then ab1 ≡ ϵ(b1)r mod p, so
ab1ϵ(b1) ≡ r mod p and similarly ab2ϵ(b2) ≡ r mod p. But then

ab1ϵ(b1) ≡ ab2ϵ(b2) mod p

⇒ a(b1ϵ(b1)− b2ϵ(b2)) ≡ 0 mod p

⇒ b1ϵ(b1)− b2ϵ(b2) ≡ 0 mod p, since gcd(a, p) = 1

⇒ b1 ≡ ϵ(b1)ϵ(b2)b2 mod p.



Note that ϵ(b1)ϵ(b2) = ±1. Since each bi satisfies 1 ≤ bi ≤ (p − 1)/2, b1 ̸≡ −b2
mod p. But then b1 ≡ b2 mod p, so b1 = b2.
In order to deduce the desired equality we take the product over ab for all 1 ≤ b ≤
(p− 1)/2. We have

(p−1)/2∏
b=1

ab = ((p− 1)/2)!a(p−1)/2

by definition of the factorial, but also

(p−1)/2∏
b=1

ab ≡
(p−1)/2∏
b=1

ϵ(b)r(b) ≡
(p−1)/2∏
b=1

ϵ(b)

(p−1)/2∏
b=1

r(b) mod p.

Since r is bijective, the product over r(b) is also equal to ((p−1)/2)!. The product
over ϵ(b) has precisely µ values of (−1) and (p − 1)/2 − µ values of 1, so the
expression above is congruent to (−1)µ((p− 1)/2)!, as desired.

3. Deduce that (a/p) = (−1)µ. (This is known as “Gauss’s Lemma”.)
Solution: Since ((p− 1)/2)! is relatively prime to p, the previous question implies
that

a(p−1)/2 ≡ (−1)µ mod p.

By part (1), a(p−1)/2 ≡ (a/p) mod p, so (a/p) = (−1)µ.

4. Show that (2/p) = 1 if p ≡ 1, 7 mod 8 and (2/p) = −1 otherwise. (Hint: use Gauss’s
Lemma, and consider the classes modulo 8 separately if needed to compute µ.)
Solution: By Gauss’s Lemma, (2/p) = (−1)µ, where µ is the number of integers
b ∈ [1, p−1

2 ] such that 2b ∈ [p+1
2 , p− 1], or equivalently such that b ∈ [p+1

4 , p−1
2 ].

If p ≡ 3 mod 4, then p+1
4 is an integer, so

µ =
p− 1

2
− p+ 1

4
+ 1 =

p+ 1

4
,

which is even if p ≡ 7 mod 8 and odd if p ≡ 3 mod 8. If p ≡ 1 mod 4, then p+1
4

is not an integer and b ∈ [p+1
4 , p−1

2 ] if and only if b ∈ [p+3
4 , p−1

2 ]. Thus

µ =
p− 1

2
− p+ 3

4
+ 1 =

p− 1

4
,

which is even if p ≡ 1 mod 8 and odd if p ≡ 5 mod 8.
Thus µ is even if p ≡ 1, 7 mod 8 and odd if p ≡ 3, 5 mod 8, so (2/p) = (−1)µ is 1
if p ≡ 1, 7 mod 8 and (2/p) = −1 if p ≡ 3, 5 mod 8.

3. For n ≥ 1, we denote by Fn the finite set of rational numbers of the form a/b where a
and b are coprime and 0 ≤ a ≤ b ≤ n.



1. Write down F5 as an ordered list of rational numbers. Do you notice anything
about either successive elements x < y of this list, or triples of successive elements
x < y < z?
Solution:

F5 =

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
.

This question will show that successive elements have relatively prime denomina-
tors, and that for successive elements a/b < c/d < e/f ,

c

d
=

a+ e

b+ f
.

2. Let x = a/b be an element of Fn, with the conditions 1 ≤ a ≤ b ≤ n, and a coprime
to b. Show that there exists integers c and d such that bc − ad = 1, c and d are
coprime and

0 ≤ n− b < d ≤ n.

(Hint: start with any solution of bc−ad = 1, and adapt it to satisfy the inequality.)
Solution: Since gcd(a, b) = 1, by (for example) the Euclidean algorithm, there exist
integers c and d such that

bc− ad = 1.

Interpreting this equation as a linear combination of c and d, we see that gcd(c, d)|(bc−
ad), and thus gcd(c, d) = 1 for any such pair c and d.
Note that if bc−ad = 1, then b(c+a)−a(d+b) = 1 and similarly b(c−a)−a(d−b) =
1. Thus for any d′ ≡ d mod b, there exists some c′ with bc′ − ad′ = 1. Choosing d′

to be the representative of d mod b with n− b < d ≤ n gives the desired solution.
3. If a/b < 1, show that c/d ∈ Fn and

c

d
≥ a

b
.

Let e/f be the next element after a/b in Fn. Show that c/d ≥ e/f , and that if
c/d > e/f , then c/d− e/f ≥ 1/(df) and e/f − a/b ≥ 1/(bf).
Solution: Since c and d are coprime, we need only show that 0 ≤ c ≤ d ≤ n in
order to show that c

d ∈ Fn. Since 0 ≤ n− b < d ≤ n, it remains only to show that
0 ≤ c ≤ d, or equivalently that 0 ≤ c/d ≤ 1.
We can rearrange the identity bc− ad+ 1 to get

c

d
=

a

b
+

1

db
. (1)

Since a
b < 1, a

b ≤ 1− 1
b , so

c

d
=

a

b
+

1

db
≤ 1− 1

b
+

1

db
≤ 1,

so c/d ∈ Fn. Equation (1) also implies immediately that c/d ≥ a/b, and in fact
that c/d > a/b.



Let e/f be the next element after a/b in Fn. Since c/d > a/b is in Fn, by definition
of e/f we must have c/d ≥ e/f . Assume that c/d > e/f . Then

c

d
− e

f
=

cf − de

df
> 0,

so cf − de > 0 and thus cf − de ≥ 1, which implies that c/d − e/f ≥ 1/(df). By
the same argument, e/f − a/b ≥ 1/(bf).

4. Deduce that c/d = e/f and that be− af = 1. (Hint: argue by contradiction using
the two previous questions.)
Solution: Assume not. Then by part (3), c/d > e/f . Then part (3) implies that

bc− ad

bd
=

c

d
− a

b
=

(
c

d
− e

f

)
+

(
e

f
− a

b

)
≥ 1

df
+

1

bf
=

b+ d

bdf
.

Clearing denominators from the far left and far right and applying the inequality
from part (2) that d > n− b, we get that

bc− ad ≥ b+ d

f
>

b+ n− b

f
=

n

f
≥ 1,

where the last inequality follows since e/f ∈ Fn and thus f ≤ n. But then bc−ad >
1, which is a contradiction; thus c/d = e/f , so by part (2) we have be− af = 1.

5. Show that if a/b < c/d < e/f are three successive elements in Fn, then

c

d
=

a+ e

b+ f
.

(Hint: use twice the previous result, and compute c and d in terms of the other
quantities.)
Solution: By the previous part we have bc− ad = 1 and de− cf = 1. Thus

bc− ad = de− cf

⇒ bc+ cf = de+ ad

⇒ c(b+ f) = d(a+ e)

⇒ c

d
=

a+ e

b+ f
, as desired.

(The set Fn is called the set of Farey fractions of order n; Farey himself did not have
anything to do with proving the properties above.)

4. The goal of this exercise is to prove that π2 is irrational. For n ≥ 0, let

fn =
Xn(1−X)n

n!
∈ Q[X].



1. Show that for all n ≥ 1 and j ≥ 0, we have f
(j)
n (0) ∈ Z and f

(j)
n (1) ∈ Z.

Solution: We have fn(x) =
rn(x)sn(x)

n! , where rn(x) = xn and sn(x) = (1− x)n. For
each j ≥ 0, by the product rule,

f (j)
n (x) =

1

n!

j∑
i=0

(
j

i

)
r(i)n (x)s(j−i)

n (x) (2)

(This is a generalization of the product rule which can be proven by induction).
Then r

(i)
n (x) = n!

(n−i)!x
n−i for i ≤ n and 0 otherwise, and s

(i)
n (x) = (−1)i n!

(n−i)!(1−
x)n−i for i ≤ n and 0 otherwise.
Consider first the case when x = 0. Then r

(i)
n (x) = 0 unless i = n, so that

f
(j)
n (0) = 0 when 0 ≤ j ≤ n− 1 and for n ≤ j ≤ 2n we have

f (j)
n (0) =

1

n!

j∑
i=0

(
j

i

)
r(i)n (0)s(j−i)

n (0)

=
1

n!

(
j

n

)
r(n)n (0)s(j−n)

n (0)

=
1

n!

(
j

n

)
n!

0!
(−1)(j−n) n!

(2n− j)!
(1− 0)j−2n

=

(
j

n

)
(−1)(j−n) n!

(2n− j)!
.

Noting that 2n − j ≤ n since j ≥ n, this expression is an integer. Finally, for
n ≥ 2j + 1, every term in (2) is 0, so f

(j)
n (x) = 0 for these values.

A similar computation for x = 1 shows that f
(j)
n (1) = 0 when 0 ≤ j ≤ n − 1 or

when j ≥ 2n+ 1, and that for n ≤ j ≤ 2n,

f (j)
n (1) =

(
j

n

)
(−1)(j−n) n!

(2n− j)!
∈ Z.

2. Suppose that π2 = a/b where a and b are coprime positive integers. For n ≥ 1,
define gn : [0, 1] → R by

gn(x) = bn
n∑

j=0

(−1)jπ2(n−j)f (2j)
n (x).

Show that gn(0) ∈ Z and gn(1) ∈ Z.
Solution: We can write

gn(x) =

n∑
j=0

(−1)jbn
(a
b

)n−j
f (2j)
n (x) =

n∑
j=0

(−1)jbjan−jf (2j)
n (x).

By part (1), f (2j)
n (0) ∈ Z and f

(2j)
n (1) ∈ Z for all j ≥ 0, so when x = 0 or 1, every

term in the sum for gn is an integer, and thus gn(0) ∈ Z and gn(1) ∈ Z.



3. Show that

gn(0) + gn(1) = π

∫ 1

0
an sin(πx)fn(x)dx.

(Hint: compute a primitive of x 7→ an sin(πx)fn(x) in terms of gn.)
Solution: Define F (x) = g′n(x) sin(πx)− gn(x)π cos(πx). Then

F ′(x) = g′′n(x) sin(πx) + g′n(x)π cos(πx)− g′n(x)π cos(πx) + gn(x)π
2 sin(πx)

= sin(πx)bn

 n∑
k=0

(−1)kπ2(n−k)f (2(k+1))
n (x) +

n∑
j=0

(−1)jπ2(n−j+1)f (2j)
n (x)


= bn sin(πx)

π2(n+1)fn(x) +

n∑
j=1

(
(−1)j+1π2(n−j+1)f (2j)

n (x) + (−1)jπ2(n−j+1)f (2j)
n (x)

) ,

where in the last line we have isolated the j = 0 term from the second term,
transformed the first sum via the substitution j = k+1, and discarded derivatives
of f higher than the 2nth derivative, at which point all derivatives of f are 0. The
terms in the sum are all 0, so we get

F ′(x) = bn sin(πx)π2(n+1)fn(x)

= π2an sin(πx)fn(x).

Thus 1
πF (x) is the antiderivative of πan sin(πx)fn(x), so that

π

∫ 1

0
an sin(πx)fn(x)dx =

1

π
(F (1)− F (0))

=
1

π
(g′n(1) sin(π)− gn(1)π cos(π)− g′n(0) sin(0) + gn(0)π cos(0)

= gn(0) + gn(1),

as desired.
4. Show that

0 < gn(0) + gn(1) <
πan

n!
for all n ≥ 1, and conclude.
Solution: For all 0 < x < 1, we have fn(x) = xn(1−x)n

n! ≤ 1
n! and that fn(x) is

nonnegative. The function sin(πx) also satisfies 0 ≤ sin(πx) ≤ 1 in the range
x ∈ [0, 1], so

0 ≤ π

∫ 1

0
an sin(πx)fn(x)dx ≤ πan

∫ 1

0

1

n!
dx =

πan

n!
.

Note also that sin(πx) = 0 if and only if x = 0 or x = 1 in this range, and the
same is true for fn(x); thus the integral is nonzero. Also, sin(πx) < 1 for nearly
the entire interval, so similarly the upper bound must be a strict upper bound.
Combining this with part (3) completes the proof that 0 < gn(0)+gn(1) <

πan

n! for
all n ≥ 1. Since gn(0)+gn(1) ∈ Z by part (2), this implies in turn that πan

n! > 1 for
all n ≥ 1. But for any fixed a, this quantity approaches 0 as n → ∞, so we have
reached a contradiction.
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