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1. The goal of of this exercise is to prove the irreducibility of cyclotomic polynomials
in Q[X] (or in Z[X], which amounts to the same thing). For q ≥ 1, we denote

Φq =
∏

1≤a≤q−1
(a,q)=1

(X − e2iπa/q)

the q-th cyclotomic polynomial. We denote ω = e2iπ/q and let K be the cyclotomic field
Q(e2iπ/q) = Q(ω).

Let f ∈ Q[X] be the monic minimal polynomial of ω; it has coefficients in Z and
divides Φq and also Xq − 1. Let g ∈ Z[X] be the polynomial such that Xq − 1 = fg.

1. Show that
q−1∏
a=1

(1− ωa) = q.

Solution: Consider the polynomial Xq − 1, whose roots are 1 and wa for a =
1, . . . , q − 1. Dividing Xq − 1 by X − 1 we get the polynomial

Xq − 1

X − 1
= Xq−1 +Xq−2 + · · ·+X + 1, (1)

but by factoring Xq − 1 as a product linear factors over C we get

Xq − 1

X − 1
=

q−1∏
a=1

(X − wa). (2)

When X = 1, the right-hand side of (1) is q, whereas when X = 1 the right-hand
side of (2) is precisely

∏q−1
a=1(1− wa), so we conclude the desired equality.

2. Let p be a prime number which does not divide q, and let p be a prime ideal in ZK

dividing pZK . Show that the elements (1, ω, . . . , ωq−1) are distinct modulo p.
Solution: Assume by contradiction that for some 0 ≤ b < c ≤ q − 1, wb ≡ wc

modulo p. Then 1 ≡ wc−b mod p, so that

1− wc−b ∈ p

⇒
q−1∏
a=1

(1− wa) ∈ p

⇒ q ∈ p.

But then we have p, q ∈ p with p and q relatively prime, so this implies that 1 ∈ p,
which contradicts the assumption that p is a prime ideal. Thus (1, w, . . . , wq−1)
are distinct modulo p.



3. Show that ωp is also a root of f . (Hint: argue by contradiction that otherwi-
se g(ωp) = 0 and use reduction modulo p and the previous question; recall that
if x ∈ ZK/p is a root of the reduction of a polynomial in Z[X], then xp is also a
root of the same polynomial.)
Solution: Consider the reductions f̄ and ḡ of f and g, respectively, modulo p. By
the previous question, f̄ and ḡ must have distinct roots.
Assume that f(wp) ̸= 0. Since wp is a root of Xq − 1, it must therefore be a root
of g. Since g(wp) = 0, ḡ(wp) = 0 ∈ ZK/p. But since f(w) = 0 by assumption we
also have f̄(w) = 0 ∈ ZK/p and thus f̄(wp) = 0 ∈ ZK/p, which contradicts the
fact that f̄ and ḡ must have distinct roots.
Thus f(wp) = 0.

4. Deduce that ωa is a root of f for any a coprime to q, and conclude that f = Φq.
Solution: Note that for any prime p, since f is the monic minimal polynomial of w
and has wp as a root, f must also be the monic minimal polynomial of wp. Thus
we can repeat the above argument for different primes p, to get that for any primes
p1, . . . , pk, all relatively prime to q, and any positive integers e1, . . . , ek, wp

e1
1 ···pekk

is a root of f . Any a coprime to q admits a factorization of this form, so wa is a
root of f .
Thus every root of Φq is a root of f , so Φq|f . We already have that f |Φq, and both
are monic, so equality must hold.

2. Let q be a prime number. The goal of this exercise is to show that the ring of integers
of the cyclotomic field Q(e2iπ/q) is Z[e2iπ/q]. Let ω = e2iπ/q.

1. Prove that
Tr(1) = q − 1, Tr(ωa) = −1 for 1 ≤ a ≤ q − 1.

Solution: Consider the basis {1, . . . , wq−2} of Q(w) as a Q-vector space. Note that
Q(w) is a (q − 1)-dimensional Q-vector space, since Φq (using the notation from
Problem 1) is irreducible of degree q − 1.
Multiplication by 1 is described by the identity matrix, which has trace q − 1, so
Tr(1) = q − 1.
Consider the matrix Ma ∈ GL(Q(w)) given by multiplication by wa for 1 ≤ a ≤
q − 1. Each basis element in {1, . . . , wq−2} is taken to a different basis element
when multiplied by wa except for the element wq−1−a, for which we have

wa · wq−1−a = wq−1 = −
q−2∑
b=0

wb.

Thus the only nonzero element on the diagonal of Ma is the −1 in the (q − 1 −
a, q − 1− a)th position, so that Tr(wa) = −1.

2. Prove that for all a coprime to q, the element

ωa − 1

ω − 1



is a unit in ZK , and that 1 − ω is not a unit in ZK . (Hint: use the formula from
question 1 of Exercise 1.)
Solution: Note that

wa − 1

w − 1
= wa−1 + wa−2 + · · ·+ 1.

All powers of w are in ZK , so wa−1
w−1 ∈ ZK . Let b be a positive integer such that

ab ≡ 1 mod q. Then similarly

wab − 1

wa − 1
= wa(b−1) + wa(b−2) + · · ·+ wa + 1 ∈ ZK ,

but
wa − 1

w − 1
· w

ab − 1

wa − 1
=

wab − 1

w − 1
=

w − 1

w − 1
= 1,

so wa−1
w−1 has an inverse in ZK and is thus a unit.

Now assume by contradiction that 1 − w is a unit in ZK . Since 1−wa

1−w is a unit in
ZK , we also know that 1 − wa is a unit in ZK for all a relatively prime to q, so∏q−1

a=1(1 − wa) must be a unit as well. But by problem (1.1), we have just shown
that q is a unit in ZK , or equivalently that 1

q ∈ ZK . But 1
q is not an algebraic

integer, so we have reached a contradiction. Thus 1− w is not a unit in ZK .

3. Prove that (1− ω)ZK | qZK and that (1− ω)ZK ∩ Z = qZ.
Solution: Since, by Exercise (1.1), we have (1 − w)|q, we must also have (1 −
w)ZK |qZK . That is, if qz ∈ qZK , then qz = (1−w)

(∏q−1
a=2(1− wa)

)
z ∈ (1−w)ZK .

We have just shown that qZ ⊆ (1−w)ZK and we know that qZ ⊆ Z, so qZ ⊆ (1−
w)ZK∩Z. Moreover, (1−w)ZK∩Z is an ideal in Z, so since q is prime, (1−w)ZK∩Z
is either qZ or Z itself. Assume by contradiction that (1 − w)ZK ∩ Z = Z. Then
1 ∈ (1 − w)ZK , so for some z ∈ ZK we have 1 = (1 − w)z. But then (1 − w) is a
unit in ZK , which contradicts the previous part.

4. Deduce that for all y ∈ ZK , we have Tr((1− ω)y) ∈ qZ.
Solution: Recall that Tr(x) ∈ Z for x ∈ ZK , so for all y ∈ ZK , we have Tr((1 −
w)y) ∈ Z. By the previous part, it remains to show only that Tr((1 − w)y) ∈
(1− w)ZK .
But Tr((1 − w)y) =

∑
σ∈Gal(Q(w)/Q) σ((1 − w)y) =

∑
σ(1 − σ(w))σ(y). Note that

for all σ, there exists an a relatively prime to q such that σ(w) = wa, which
in turn implies that (1 − σ(w))σ(y) = (1 − w) (1−wa)

(1−w) σ(y) ∈ (1 − w)ZK . Thus
Tr((1− w)y) ∈ ZK , as desired.

5. Find an element b0 of K such that for any

x =

q−2∑
i=0

aiω
i

in K, we have Tr(b0x) = a0. Deduce that if x ∈ ZK then a0 ∈ Z.



Solution: Write b0 = 1−w
q , and assume that ai ∈ Q. Then we can compute explicitly

Tr(b0x) = Tr

(
q−2∑
i=0

ai
1− w

q
wi

)

=

q−2∑
i=0

ai
q
(Tr(wi)− Tr(wi+1).

If 1 ≤ i ≤ q − 2, then Tr(wi) = Tr(wi+1) = −1, so that Tr(wi)− Tr(wi+1) = 0. If
i = 0, then Tr(wi) = q − 1 and Tr(wi+1) = −1, so that we have

Tr(b0x) =
a0
q
(Tr(1)− Tr(w))

=
a0
q
q = a0.

If x ∈ ZK , then we have a0 = Tr
(
1−w
q x

)
= 1

q Tr((1 − w)x). By the previous

portion, Tr((1− w)x) ∈ qZ, so 1
q Tr((1− w)x) ∈ Z. Thus a0 ∈ Z.

6. Similarly, find the element bi such that, for any x as above, we have Tr(bix) = ai,
and deduce that ai ∈ Z for all i. (Hint: consider ωjx for suitable j.)
Solution: Consider b0w

q−i for 1 ≤ i ≤ q − 2. Then for any x as above,

Tr(b0w
q−ix) = Tr

q−2∑
j=0

aj
1− w

q
wq−iwj


=

q−2∑
j=0

aj
q
(Tr(wq−i+j)− Tr(wq−i+j+1)).

When j = i, we have wq−i+j = wq = 1, which has trace q− 1, and when j = i− 1,
we have wq−i+j+1 = wq = 1; all other traces in the above expression are −1, so

Tr(b0w
q−ix) =

ai
q
(q − 1 + 1) +

ai−1

q
(−q)

= ai − ai−1.

Thus choosing bi = b0
∑i

j=0w
q−j is the desired element. By repeating the argu-

ments from the previous two parts, this shows that ai ∈ Z whenever x ∈ ZK .

7. Conclude that ZK = Z[ω].
Solution: Since w ∈ ZK , we certainly have Z[w] ⊆ ZK . Now assume that x =∑q−2

i=0 aiw
i ∈ ZK . By the previous two parts, ai ∈ Z for all i, so x ∈ Z[w]. Thus

ZK ⊆ Z[w], so equality holds.

3. In this exercise, we show that a naive adaptation of the previous argument can not work
when q has more than one prime factor. Let q ≥ 1 be an integer which is not a prime
power (so it has at least two different prime factors), let ω = e2iπ/q and K = Q(ω).



1. Let Xq be the set of integers a with 1 ≤ a ≤ q− 1 such that the order of ωa in C×

is not a prime power. Show that∏
a∈Xq

(1− ωa) = 1.

(Hint: use the formula from Question 1 of Exercise 1 for q and for pv-th roots of
unity, where v is the p-adic valuation of q.) Solution: Let vp be the p-adic valuation
of q. The elements wa such that the order of wa in C× is a power of p are precisely
the pvp-th roots of unity. By Exercise 1.1, these satisfy

pvp−1∏
b=1

(1− e2πib/p
vp
) = pvp .

Then once more by Exercise 1.1, we have

q =

q∏
a=1

(1− wa)

=
∏
p|q

prime

 q∏
a=1

ord(wa)|pvp

(1− wa)

×
∏
a∈Xq

(1− wa)

=
∏
p|q

prime

pvp ×
∏
a∈Xq

(1− wa)

= q
∏
a∈Xq

(1− wa).

By cancelling the qs on both sides of this identity we get the desired result.
2. Deduce that 1− ω is a unit in ZK (in contrast with Question 2 of Exercise 2).

Solution: The element w itself has order q, which by assumption is not a prime
power. Thus (1 − w)|

∏
a∈Xq

(1 − wa) = 1, so 1 − w is a unit in ZK with inverse∏
a∈Xq

a̸=1

(1− wa).

4. Let K be a number field with [K : Q] ≥ 2. Let p be a prime number. The goal of this
exercise is to give many examples of rings related to ZK but which are not Dedekind
domains, and to show this failure explicitly.

Let p be a prime number, and define A = Z+ pZK ⊂ ZK . Let

q = pA ⊂ A, p = pZK .

1. Show that there is a Z-basis (ωi)1≤i≤[K:Q] of ZK such that ω1 = 1.
Solution: This can be done in several ways, but consider the Z-module quotient
ZK/Z. Let x ∈ ZK \ Z have image x̄ ̸= 0 ∈ ZK/Z.



Assume by contradiction that x̄ is a torsion element of minimal order m in ZK/Z;
that is, with mx̄ = 0 ∈ ZK/Z. Then there exists n ∈ Z with mx = n. Note that m
and n are relatively prime, since m

gcd(m,n)x ∈ Z as well.
Thus there exist integers a and b with am + bn = 1, which implies that bmx =
bn = (1− am), so that m(bx+ a) = 1. Thus bx+ a = 1/m ∈ ZK , so since m ∈ Z
we must have m = ±1, and thus x̄ = 0 ∈ ZK/Z, a contradiction.
We have shown in particular that ZK/Z has no torsion, so it must be a free Z-
module with Z-basis {ω2, . . . , ωn}. Then {1, ω2, . . . , ωn} is a Z-basis of ZK , and
n = [K : Q].

2. Show that A is a subring of ZK and that p is an ideal in A and also in ZK such
that q ⊂ p ⊂ A. Show also that p = qZK (i.e., the ZK-ideal generated by q is
equal to p).
Solution: The set A is certainly closed under addition and additive inverses; it
suffices to show that it is closed under multiplication. Let (n1+px1), (n2+px2) be
two elements of A with n1, n2 ∈ Z and x1, x2 ∈ ZK . Then (n1 + px1)(n2 + px2) =
n1n2 + p(n1x2 + n2x1 + px1x2). Since n1n2 ∈ Z and n1x2 + n2x1 + px1x2 ∈ ZK ,
the product is also in A.
It is immediate that q ⊂ p ⊂ A and that p is an ideal in ZK . Since A ⊂ ZK , the
product of any element of p and any element of A remains in p. Thus p ⊂ A is
also an ideal.
We have that qZK = pAZK ⊂ pZK = p; it remains to show the other inclusion.
But p ∈ q since 1 ∈ A, so p = pZK ⊂ qZK , as desired.

3. Prove that

|q/p2| = p, |p/q| = p[K:Q]−1, |A/p| = p, |ZK/A| = pn−1.

(Hint: find Z-bases of these various abelian groups in terms of the basis of questi-
on 1.)
In particular, note that |A/p2| ≠ |A/p|2.
Solution: Consider the Z-basis w1, . . . , wn of ZK with n = [K : Q] and w1 = 1.
Then A has Z-basis {w1, pw2, . . . , pwn}, whereas p has Z-basis {pw1, . . . , pwn}, p2

has Z-basis {p2w1, . . . , p
2wn}, and q has Z-basis {pw1, p

2w2, . . . , p
2wn}.

The quotient q/p2 is thus generated by pw1, which is an element of order p, so that
|q/p2| = p. The quotient p/q is generated by {pw2, . . . , pwn}, where every element
has additive order p, and thus |p/q| = pn−1. The quotient A/p is generated by
w1 = 1, which has order p, so |A/p| = p. Finally the quotient ZK/A is generated
by {w2, . . . , wn}, each of order p, so that |ZK/A| = pn−1.
Notably,

|A/p2| = |A/p| · |p/q| · |q/p2| = pn+1,

whereas |A/p|2 = p2.

4. Show that p is a prime ideal in A. Show that if p1, . . . , pk are prime ideals of A
such that p | p1 · · ·pk, then p = pj for some j. (Hint: the last property is a general
fact about prime ideals in a commutative ring.)



Solution: Note that |A/p| = p, so in fact we must have |A/p| ∼= Z/pZ. This is an
integral domain, so p is prime.
Let p1, . . . ,pk be prime ideals of A and assume that p|p1 · · ·pk, or equivalently that
p1 · · ·pk = pr for some ideal r ⊂ A. Then p1 · · ·pk ⊂ p. Assume by contradiction
that for all j, p ̸⊃ pj . Then for each j there exists aj ∈ pj with aj ̸∈ p. However,
by assumption a = a1 · · · ak ∈ p, which contradicts the primality of p.
It remains to show that pj is maximal, which implies that pj = p. Assume not. If
a ∈ pj ∩ Z, then aA ⊂ pjA ⊂ A, and both aA and A have rank n as Z-modules.
Thus A/pj is finite, and since it is a finite integral domain it must be a field, so
pj is maximal, and so pj = p as desired.

5. Show that
{x ∈ K | xp ⊂ p} = ZK ,

and deduce that p ⊂ A is not principal as an ideal of A (although it is principal
as an ideal of ZK).
Solution: Let x ∈ K with xp ⊂ p. Write x =

∑n
i=1 xiwi using the basis (wi)i from

part 1, and note that the elements of ZK are precisely those with all xi ∈ Z, and
the elements of pZK are precisely those with all xi ∈ pZ.
If x ̸∈ ZK , then some xi ̸∈ Z, so then pxi ̸∈ Z. Thus px ̸∈ p, so xp ̸⊂ p. On the
other hand pZK ⊂ ZK is an ideal, so for all x ∈ ZK , xp ⊂ p.
Assume by contradiction that p ⊂ A is principal, and let a ∈ A be such that
p = aA. Define p̃ := a−1A, so that pp̃ = A. But then

xp ⊂ p ⇔ xpp̃ ⊂ pp̃

⇔ xA ∈ A

⇔ x ∈ A.

But then we have shown that ZK ⊂ A, a contradiction.
6. Show that qp = p2.

Solution: First note that p2 = p2ZK . Since p ∈ q, qp ⊃ p2ZK = p2. Since q ⊂ p,
we have qp ⊂ p2, so equality holds.

7. Show that q is an ideal of A which is not the product of prime ideals of A. (Hint:
assuming that q is a product of primes, show that we would have necessarily q = pk

for some integer k ≥ 1; show using the previous results that this is not the case.)
Solution: Assume by contradiction that q = p1 · · ·pk for prime ideals p1, . . . ,pk.
Then p2 = qp = p1 · · ·pkp. Thus for each j, pj |p2 by part (4), so for each j,
pj = p. Thus q = pk for some k ≥ 1. Since |q/p| ≠ 1, we cannot have k = 1. But
if k ≥ 2 then we must have |q/p2| = 1, which is also false. Thus we have reached
a contradiction, so q is not the product of prime ideals of A.
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