Exercise Sheet 3

1. The goal of this exercise is to prove the irreducibility of cyclotomic polynomials in $\mathbb{Q}[X]$ (or in $\mathbb{Z}[X]$, which amounts to the same thing). For $q \geq 1$, we denote

$$\Phi_q = \prod_{\substack{1 \le a \le q-1 \\ (a,q)=1}} (X - e^{2i\pi a/q})$$

the q-th cyclotomic polynomial. We denote $\omega = e^{2i\pi/q}$ and let K be the cyclotomic field $\mathbb{Q}(e^{2i\pi/q}) = \mathbb{Q}(\omega)$.

Let $f \in \mathbb{Q}[X]$ be the monic minimal polynomial of ω ; it has coefficients in \mathbb{Z} and divides Φ_q and also $X^q - 1$. Let $g \in \mathbb{Z}[X]$ be the polynomial such that $X^q - 1 = fg$.

1. Show that

$$\prod_{a=1}^{q-1} (1-\omega^a) = q$$

<u>Solution</u>: Consider the polynomial $X^q - 1$, whose roots are 1 and w^a for $a = 1, \ldots, q-1$. Dividing $X^q - 1$ by X - 1 we get the polynomial

$$\frac{X^{q}-1}{X-1} = X^{q-1} + X^{q-2} + \dots + X + 1,$$
(1)

but by factoring $X^q - 1$ as a product linear factors over \mathbb{C} we get

$$\frac{X^q - 1}{X - 1} = \prod_{a=1}^{q-1} (X - w^a).$$
(2)

When X = 1, the right-hand side of (1) is q, whereas when X = 1 the right-hand side of (2) is precisely $\prod_{a=1}^{q-1} (1 - w^a)$, so we conclude the desired equality.

2. Let p be a prime number which does not divide q, and let p be a prime ideal in \mathbb{Z}_K dividing $p\mathbb{Z}_K$. Show that the elements $(1, \omega, \ldots, \omega^{q-1})$ are distinct modulo p. Solution: Assume by contradiction that for some $0 \leq b < c \leq q-1$, $w^b \equiv w^c$ modulo p. Then $1 \equiv w^{c-b} \mod p$, so that

$$1 - w^{c-b} \in p$$

 $\Rightarrow \prod_{a=1}^{q-1} (1 - w^a) \in p$
 $\Rightarrow q \in p.$

But then we have $p, q \in \mathbf{p}$ with p and q relatively prime, so this implies that $1 \in \mathbf{p}$, which contradicts the assumption that \mathbf{p} is a prime ideal. Thus $(1, w, \ldots, w^{q-1})$ are distinct modulo \mathbf{p} .

- 3. Show that ω^p is also a root of f. (Hint: argue by contradiction that otherwise g(ω^p) = 0 and use reduction modulo p and the previous question; recall that if x ∈ Z_K/p is a root of the reduction of a polynomial in Z[X], then x^p is also a root of the same polynomial.)
 Solution: Consider the reductions f and g of f and g, respectively, modulo p. By the previous question, f and g must have distinct roots.
 Assume that f(w^p) ≠ 0. Since w^p is a root of X^q − 1, it must therefore be a root of g. Since g(w^p) = 0, g(w^p) = 0 ∈ Z_K/p. But since f(w) = 0 by assumption we also have f(w) = 0 ∈ Z_K/p and thus f(w^p) = 0 ∈ Z_K/p, which contradicts the fact that f and g must have distinct roots.
- 4. Deduce that ω^a is a root of f for any a coprime to q, and conclude that $f = \Phi_q$. Solution: Note that for any prime p, since f is the monic minimal polynomial of w and has w^p as a root, f must also be the monic minimal polynomial of w^p . Thus we can repeat the above argument for different primes p, to get that for any primes p_1, \ldots, p_k , all relatively prime to q, and any positive integers $e_1, \ldots, e_k, w^{p_1^{e_1} \ldots p_k^{e_k}}$ is a root of f. Any a coprime to q admits a factorization of this form, so w^a is a root of f.

Thus every root of Φ_q is a root of f, so $\Phi_q|f$. We already have that $f|\Phi_q$, and both are monic, so equality must hold.

- **2.** Let q be a prime number. The goal of this exercise is to show that the ring of integers of the cyclotomic field $\mathbb{Q}(e^{2i\pi/q})$ is $\mathbb{Z}[e^{2i\pi/q}]$. Let $\omega = e^{2i\pi/q}$.
 - 1. Prove that

$$Tr(1) = q - 1$$
, $Tr(\omega^a) = -1$ for $1 \le a \le q - 1$.

<u>Solution</u>: Consider the basis $\{1, \ldots, w^{q-2}\}$ of $\mathbb{Q}(w)$ as a \mathbb{Q} -vector space. Note that $\mathbb{Q}(w)$ is a (q-1)-dimensional \mathbb{Q} -vector space, since Φ_q (using the notation from Problem 1) is irreducible of degree q-1.

Multiplication by 1 is described by the identity matrix, which has trace q - 1, so Tr(1) = q - 1.

Consider the matrix $M_a \in \operatorname{GL}(\mathbb{Q}(w))$ given by multiplication by w^a for $1 \leq a \leq q-1$. Each basis element in $\{1, \ldots, w^{q-2}\}$ is taken to a different basis element when multiplied by w^a except for the element w^{q-1-a} , for which we have

$$w^{a} \cdot w^{q-1-a} = w^{q-1} = -\sum_{b=0}^{q-2} w^{b}.$$

Thus the only nonzero element on the diagonal of M_a is the -1 in the (q-1-a, q-1-a)th position, so that $\text{Tr}(w^a) = -1$.

2. Prove that for all a coprime to q, the element

$$\frac{\omega^a - 1}{\omega - 1}$$

is a unit in \mathbb{Z}_K , and that $1 - \omega$ is not a unit in \mathbb{Z}_K . (Hint: use the formula from question 1 of Exercise 1.)

Solution: Note that

$$\frac{w^a - 1}{w - 1} = w^{a - 1} + w^{a - 2} + \dots + 1.$$

All powers of w are in \mathbb{Z}_K , so $\frac{w^a-1}{w-1} \in \mathbb{Z}_K$. Let b be a positive integer such that $ab \equiv 1 \mod q$. Then similarly

$$\frac{w^{ab} - 1}{w^a - 1} = w^{a(b-1)} + w^{a(b-2)} + \dots + w^a + 1 \in \mathbb{Z}_K,$$

but

$$\frac{w^a - 1}{w - 1} \cdot \frac{w^{ab} - 1}{w^a - 1} = \frac{w^{ab} - 1}{w - 1} = \frac{w - 1}{w - 1} = 1,$$

so $\frac{w^a-1}{w-1}$ has an inverse in \mathbb{Z}_K and is thus a unit.

Now assume by contradiction that 1 - w is a unit in \mathbb{Z}_K . Since $\frac{1-w^a}{1-w}$ is a unit in \mathbb{Z}_K , we also know that $1 - w^a$ is a unit in \mathbb{Z}_K for all *a* relatively prime to *q*, so $\prod_{a=1}^{q-1}(1-w^a)$ must be a unit as well. But by problem (1.1), we have just shown that *q* is a unit in \mathbb{Z}_K , or equivalently that $\frac{1}{q} \in \mathbb{Z}_K$. But $\frac{1}{q}$ is not an algebraic integer, so we have reached a contradiction. Thus 1 - w is not a unit in \mathbb{Z}_K .

3. Prove that $(1 - \omega)\mathbb{Z}_K \mid q\mathbb{Z}_K$ and that $(1 - \omega)\mathbb{Z}_K \cap \mathbb{Z} = q\mathbb{Z}$.

Solution: Since, by Exercise (1.1), we have (1-w)|q, we must also have $(1-w)\mathbb{Z}_K|q\mathbb{Z}_K$. That is, if $qz \in q\mathbb{Z}_K$, then $qz = (1-w)\left(\prod_{a=2}^{q-1}(1-w^a)\right)z \in (1-w)\mathbb{Z}_K$. We have just shown that $q\mathbb{Z} \subseteq (1-w)\mathbb{Z}_K$ and we know that $q\mathbb{Z} \subseteq \mathbb{Z}$, so $q\mathbb{Z} \subseteq (1-w)\mathbb{Z}_K \cap \mathbb{Z}$. Moreover, $(1-w)\mathbb{Z}_K \cap \mathbb{Z}$ is an ideal in \mathbb{Z} , so since q is prime, $(1-w)\mathbb{Z}_K \cap \mathbb{Z}$ is either $q\mathbb{Z}$ or \mathbb{Z} itself. Assume by contradiction that $(1-w)\mathbb{Z}_K \cap \mathbb{Z} = \mathbb{Z}$. Then $1 \in (1-w)\mathbb{Z}_K$, so for some $z \in \mathbb{Z}_K$ we have 1 = (1-w)z. But then (1-w) is a unit in \mathbb{Z}_K , which contradicts the previous part.

4. Deduce that for all $y \in \mathbb{Z}_K$, we have $\operatorname{Tr}((1-\omega)y) \in q\mathbb{Z}$. <u>Solution</u>: Recall that $\operatorname{Tr}(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}_K$, so for all $y \in \mathbb{Z}_K$, we have $\operatorname{Tr}((1-w)y) \in \mathbb{Z}$. By the previous part, it remains to show only that $\operatorname{Tr}((1-w)y) \in (1-w)\mathbb{Z}_K$.

But $\operatorname{Tr}((1-w)y) = \sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(w)/\mathbb{Q})} \sigma((1-w)y) = \sum_{\sigma} (1-\sigma(w))\sigma(y)$. Note that for all σ , there exists an *a* relatively prime to *q* such that $\sigma(w) = w^a$, which in turn implies that $(1-\sigma(w))\sigma(y) = (1-w)\frac{(1-w^a)}{(1-w)}\sigma(y) \in (1-w)\mathbb{Z}_K$. Thus $\operatorname{Tr}((1-w)y) \in \mathbb{Z}_K$, as desired.

5. Find an element b_0 of K such that for any

$$x = \sum_{i=0}^{q-2} a_i \omega^i$$

in K, we have $\operatorname{Tr}(b_0 x) = a_0$. Deduce that if $x \in \mathbb{Z}_K$ then $a_0 \in \mathbb{Z}$.

<u>Solution</u>: Write $b_0 = \frac{1-w}{q}$, and assume that $a_i \in \mathbb{Q}$. Then we can compute explicitly

$$\operatorname{Tr}(b_0 x) = \operatorname{Tr}\left(\sum_{i=0}^{q-2} a_i \frac{1-w}{q} w^i\right)$$
$$= \sum_{i=0}^{q-2} \frac{a_i}{q} (\operatorname{Tr}(w^i) - \operatorname{Tr}(w^{i+1}).$$

If $1 \le i \le q - 2$, then $\text{Tr}(w^i) = \text{Tr}(w^{i+1}) = -1$, so that $\text{Tr}(w^i) - \text{Tr}(w^{i+1}) = 0$. If i = 0, then $\text{Tr}(w^i) = q - 1$ and $\text{Tr}(w^{i+1}) = -1$, so that we have

$$\operatorname{Tr}(b_0 x) = \frac{a_0}{q} (\operatorname{Tr}(1) - \operatorname{Tr}(w))$$
$$= \frac{a_0}{q} q = a_0.$$

If $x \in \mathbb{Z}_K$, then we have $a_0 = \operatorname{Tr}\left(\frac{1-w}{q}x\right) = \frac{1}{q}\operatorname{Tr}((1-w)x)$. By the previous portion, $\operatorname{Tr}((1-w)x) \in q\mathbb{Z}$, so $\frac{1}{q}\operatorname{Tr}((1-w)x) \in \mathbb{Z}$. Thus $a_0 \in \mathbb{Z}$.

6. Similarly, find the element b_i such that, for any x as above, we have $\operatorname{Tr}(b_i x) = a_i$, and deduce that $a_i \in \mathbb{Z}$ for all i. (Hint: consider $\omega^j x$ for suitable j.) Solution: Consider $b_0 w^{q-i}$ for $1 \le i \le q-2$. Then for any x as above,

$$\operatorname{Tr}(b_0 w^{q-i} x) = \operatorname{Tr}\left(\sum_{j=0}^{q-2} a_j \frac{1-w}{q} w^{q-i} w^j\right)$$
$$= \sum_{j=0}^{q-2} \frac{a_j}{q} (\operatorname{Tr}(w^{q-i+j}) - \operatorname{Tr}(w^{q-i+j+1})).$$

When j = i, we have $w^{q-i+j} = w^q = 1$, which has trace q-1, and when j = i-1, we have $w^{q-i+j+1} = w^q = 1$; all other traces in the above expression are -1, so

$$\operatorname{Tr}(b_0 w^{q-i} x) = \frac{a_i}{q} (q-1+1) + \frac{a_{i-1}}{q} (-q)$$
$$= a_i - a_{i-1}.$$

Thus choosing $b_i = b_0 \sum_{j=0}^i w^{q-j}$ is the desired element. By repeating the arguments from the previous two parts, this shows that $a_i \in \mathbb{Z}$ whenever $x \in \mathbb{Z}_K$.

- 7. Conclude that $\mathbb{Z}_K = \mathbb{Z}[\omega]$. <u>Solution</u>: Since $w \in \mathbb{Z}_K$, we certainly have $\mathbb{Z}[w] \subseteq \mathbb{Z}_K$. Now assume that $x = \sum_{i=0}^{q-2} a_i w^i \in \mathbb{Z}_K$. By the previous two parts, $a_i \in \mathbb{Z}$ for all i, so $x \in \mathbb{Z}[w]$. Thus $\mathbb{Z}_K \subseteq \mathbb{Z}[w]$, so equality holds.
- **3.** In this exercise, we show that a naive adaptation of the previous argument can not work when q has more than one prime factor. Let $q \ge 1$ be an integer which is not a prime power (so it has at least two different prime factors), let $\omega = e^{2i\pi/q}$ and $K = \mathbb{Q}(\omega)$.

1. Let X_q be the set of integers a with $1 \le a \le q-1$ such that the order of ω^a in \mathbb{C}^{\times} is not a prime power. Show that

$$\prod_{a \in X_q} (1 - \omega^a) = 1.$$

(Hint: use the formula from Question 1 of Exercise 1 for q and for p^v -th roots of unity, where v is the *p*-adic valuation of q.) <u>Solution</u>: Let v_p be the *p*-adic valuation of q. The elements w^a such that the order of w^a in \mathbb{C}^{\times} is a power of p are precisely the p^{v_p} -th roots of unity. By Exercise 1.1, these satisfy

$$\prod_{b=1}^{p^{v_p}-1} (1 - e^{2\pi i b/p^{v_p}}) = p^{v_p}.$$

Then once more by Exercise 1.1, we have

$$q = \prod_{a=1}^{q} (1 - w^{a})$$

$$= \prod_{\substack{p|q \\ \text{prime}}} \left(\prod_{\substack{a=1 \\ \text{ord}(w^{a}) \mid p^{v_{p}}}}^{q} (1 - w^{a}) \right) \times \prod_{a \in X_{q}} (1 - w^{a})$$

$$= \prod_{\substack{p|q \\ \text{prime}}} p^{v_{p}} \times \prod_{a \in X_{q}} (1 - w^{a})$$

$$= q \prod_{a \in X_{q}} (1 - w^{a}).$$

By cancelling the qs on both sides of this identity we get the desired result.

- 2. Deduce that 1ω is a unit in \mathbb{Z}_K (in contrast with Question 2 of Exercise 2). <u>Solution</u>: The element w itself has order q, which by assumption is not a prime power. Thus $(1 - w) |\prod_{a \in X_q} (1 - w^a) = 1$, so 1 - w is a unit in \mathbb{Z}_K with inverse $\prod_{\substack{a \in X_q \\ a \neq 1}} (1 - w^a)$.
- 4. Let K be a number field with $[K : \mathbb{Q}] \geq 2$. Let p be a prime number. The goal of this exercise is to give many examples of rings related to \mathbb{Z}_K but which are not Dedekind domains, and to show this failure explicitly.

Let p be a prime number, and define $A = \mathbb{Z} + p\mathbb{Z}_K \subset \mathbb{Z}_K$. Let

$$\boldsymbol{q} = pA \subset A, \qquad \boldsymbol{p} = p\mathbb{Z}_K.$$

1. Show that there is a \mathbb{Z} -basis $(\omega_i)_{1 \leq i \leq [K:\mathbb{Q}]}$ of \mathbb{Z}_K such that $\omega_1 = 1$. <u>Solution</u>: This can be done in several ways, but consider the \mathbb{Z} -module quotient \mathbb{Z}_K/\mathbb{Z} . Let $x \in \mathbb{Z}_K \setminus \mathbb{Z}$ have image $\bar{x} \neq 0 \in \mathbb{Z}_K/\mathbb{Z}$. Assume by contradiction that \bar{x} is a torsion element of minimal order m in \mathbb{Z}_K/\mathbb{Z} ; that is, with $m\bar{x} = 0 \in \mathbb{Z}_K/\mathbb{Z}$. Then there exists $n \in \mathbb{Z}$ with mx = n. Note that mand n are relatively prime, since $\frac{m}{\gcd(m,n)}x \in \mathbb{Z}$ as well.

Thus there exist integers a and b with am + bn = 1, which implies that bmx = bn = (1 - am), so that m(bx + a) = 1. Thus $bx + a = 1/m \in \mathbb{Z}_K$, so since $m \in \mathbb{Z}$ we must have $m = \pm 1$, and thus $\bar{x} = 0 \in \mathbb{Z}_K/\mathbb{Z}$, a contradiction.

We have shown in particular that \mathbb{Z}_K/\mathbb{Z} has no torsion, so it must be a free \mathbb{Z} -module with \mathbb{Z} -basis $\{\omega_2, \ldots, \omega_n\}$. Then $\{1, \omega_2, \ldots, \omega_n\}$ is a \mathbb{Z} -basis of \mathbb{Z}_K , and $n = [K : \mathbb{Q}]$.

2. Show that A is a subring of \mathbb{Z}_K and that p is an ideal in A and also in \mathbb{Z}_K such that $q \subset p \subset A$. Show also that $p = q\mathbb{Z}_K$ (i.e., the \mathbb{Z}_K -ideal generated by q is equal to p).

<u>Solution</u>: The set A is certainly closed under addition and additive inverses; it suffices to show that it is closed under multiplication. Let $(n_1 + px_1), (n_2 + px_2)$ be two elements of A with $n_1, n_2 \in \mathbb{Z}$ and $x_1, x_2 \in \mathbb{Z}_K$. Then $(n_1 + px_1)(n_2 + px_2) = n_1n_2 + p(n_1x_2 + n_2x_1 + px_1x_2)$. Since $n_1n_2 \in \mathbb{Z}$ and $n_1x_2 + n_2x_1 + px_1x_2 \in \mathbb{Z}_K$, the product is also in A.

It is immediate that $\boldsymbol{q} \subset \boldsymbol{p} \subset A$ and that \boldsymbol{p} is an ideal in \mathbb{Z}_K . Since $A \subset \mathbb{Z}_K$, the product of any element of \boldsymbol{p} and any element of A remains in \boldsymbol{p} . Thus $\boldsymbol{p} \subset A$ is also an ideal.

We have that $\boldsymbol{q}\mathbb{Z}_K = pA\mathbb{Z}_K \subset p\mathbb{Z}_K = \boldsymbol{p}$; it remains to show the other inclusion. But $p \in \boldsymbol{q}$ since $1 \in A$, so $\boldsymbol{p} = p\mathbb{Z}_K \subset \boldsymbol{q}\mathbb{Z}_K$, as desired.

3. Prove that

$$|\boldsymbol{q}/\boldsymbol{p}^2| = p, \qquad |\boldsymbol{p}/\boldsymbol{q}| = p^{[K:\mathbb{Q}]-1}, \qquad |A/\boldsymbol{p}| = p, \qquad |\mathbb{Z}_K/A| = p^{n-1}.$$

(Hint: find \mathbb{Z} -bases of these various abelian groups in terms of the basis of question 1.)

In particular, note that $|A/p^2| \neq |A/p|^2$.

Solution: Consider the \mathbb{Z} -basis w_1, \ldots, w_n of \mathbb{Z}_K with $n = [K : \mathbb{Q}]$ and $w_1 = 1$. Then A has \mathbb{Z} -basis $\{w_1, pw_2, \ldots, pw_n\}$, whereas p has \mathbb{Z} -basis $\{pw_1, \ldots, pw_n\}$, p^2 has \mathbb{Z} -basis $\{p^2w_1, \ldots, p^2w_n\}$, and q has \mathbb{Z} -basis $\{pw_1, p^2w_2, \ldots, p^2w_n\}$.

The quotient $\boldsymbol{q}/\boldsymbol{p}^2$ is thus generated by pw_1 , which is an element of order p, so that $|\boldsymbol{q}/\boldsymbol{p}^2| = p$. The quotient $\boldsymbol{p}/\boldsymbol{q}$ is generated by $\{pw_2, \ldots, pw_n\}$, where every element has additive order p, and thus $|\boldsymbol{p}/\boldsymbol{q}| = p^{n-1}$. The quotient A/\boldsymbol{p} is generated by $w_1 = 1$, which has order p, so $|A/\boldsymbol{p}| = p$. Finally the quotient \mathbb{Z}_K/A is generated by $\{w_2, \ldots, w_n\}$, each of order p, so that $|\mathbb{Z}_K/A| = p^{n-1}$. Notably,

$$|A/\mathbf{p}^2| = |A/\mathbf{p}| \cdot |\mathbf{p}/\mathbf{q}| \cdot |\mathbf{q}/\mathbf{p}^2| = p^{n+1},$$

whereas $|A/\mathbf{p}|^2 = p^2$.

4. Show that \boldsymbol{p} is a prime ideal in A. Show that if $\boldsymbol{p}_1, \ldots, \boldsymbol{p}_k$ are prime ideals of A such that $\boldsymbol{p} \mid \boldsymbol{p}_1 \cdots \boldsymbol{p}_k$, then $\boldsymbol{p} = \boldsymbol{p}_j$ for some j. (Hint: the last property is a general fact about prime ideals in a commutative ring.)

<u>Solution</u>: Note that |A/p| = p, so in fact we must have $|A/p| \cong \mathbb{Z}/p\mathbb{Z}$. This is an integral domain, so p is prime.

Let p_1, \ldots, p_k be prime ideals of A and assume that $p|p_1 \cdots p_k$, or equivalently that $p_1 \cdots p_k = pr$ for some ideal $r \subset A$. Then $p_1 \cdots p_k \subset p$. Assume by contradiction that for all $j, p \not\supseteq p_j$. Then for each j there exists $a_j \in p_j$ with $a_j \notin p$. However, by assumption $a = a_1 \cdots a_k \in p$, which contradicts the primality of p.

It remains to show that p_j is maximal, which implies that $p_j = p$. Assume not. If $a \in p_j \cap \mathbb{Z}$, then $aA \subset p_jA \subset A$, and both aA and A have rank n as \mathbb{Z} -modules. Thus A/p_j is finite, and since it is a finite integral domain it must be a field, so p_j is maximal, and so $p_j = p$ as desired.

5. Show that

$$\{x \in K \mid x p \subset p\} = \mathbb{Z}_K,$$

and deduce that $p \subset A$ is not principal as an ideal of A (although it is principal as an ideal of \mathbb{Z}_K).

<u>Solution</u>: Let $x \in K$ with $x\mathbf{p} \subset \mathbf{p}$. Write $x = \sum_{i=1}^{n} x_i w_i$ using the basis $(w_i)_i$ from part 1, and note that the elements of \mathbb{Z}_K are precisely those with all $x_i \in \mathbb{Z}$, and the elements of $p\mathbb{Z}_K$ are precisely those with all $x_i \in p\mathbb{Z}$.

If $x \notin \mathbb{Z}_K$, then some $x_i \notin \mathbb{Z}$, so then $px_i \notin \mathbb{Z}$. Thus $px \notin p$, so $xp \notin p$. On the other hand $p\mathbb{Z}_K \subset \mathbb{Z}_K$ is an ideal, so for all $x \in \mathbb{Z}_K$, $xp \subset p$.

Assume by contradiction that $p \subset A$ is principal, and let $a \in A$ be such that p = aA. Define $\tilde{p} := a^{-1}A$, so that $p\tilde{p} = A$. But then

$$x \mathbf{p} \subset \mathbf{p} \Leftrightarrow x \mathbf{p} \mathbf{p} \subset \mathbf{p} \mathbf{p}$$
$$\Leftrightarrow x A \in A$$
$$\Leftrightarrow x \in A.$$

But then we have shown that $\mathbb{Z}_K \subset A$, a contradiction.

- 6. Show that $qp = p^2$. <u>Solution</u>: First note that $p^2 = p^2 \mathbb{Z}_K$. Since $p \in q$, $qp \supset p^2 \mathbb{Z}_K = p^2$. Since $q \subset p$, we have $qp \subset p^2$, so equality holds.
- 7. Show that \boldsymbol{q} is an ideal of A which is *not* the product of prime ideals of A. (Hint: assuming that \boldsymbol{q} is a product of primes, show that we would have necessarily $\boldsymbol{q} = \boldsymbol{p}^k$ for some integer $k \geq 1$; show using the previous results that this is not the case.) Solution: Assume by contradiction that $\boldsymbol{q} = \boldsymbol{p}_1 \cdots \boldsymbol{p}_k$ for prime ideals $\boldsymbol{p}_1, \ldots, \boldsymbol{p}_k$. Then $\boldsymbol{p}^2 = \boldsymbol{q}\boldsymbol{p} = \boldsymbol{p}_1 \cdots \boldsymbol{p}_k \boldsymbol{p}$. Thus for each j, $\boldsymbol{p}_j | \boldsymbol{p}^2$ by part (4), so for each j, $\boldsymbol{p}_j = \boldsymbol{p}$. Thus $\boldsymbol{q} = \boldsymbol{p}^k$ for some $k \geq 1$. Since $|\boldsymbol{q}/\boldsymbol{p}| \neq 1$, we cannot have k = 1. But if $k \geq 2$ then we must have $|\boldsymbol{q}/\boldsymbol{p}^2| = 1$, which is also false. Thus we have reached a contradiction, so \boldsymbol{q} is not the product of prime ideals of A.

Due date: 28.10.2024