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Exercise Sheet 3

1. The goal of of this exercise is to prove the irreducibility of cyclotomic polynomials
in Q[X] (or in Z[X], which amounts to the same thing). For ¢ > 1, we denote

(I)q _ H (X o eQiﬂ'a/q)
1<a<qg—1
(a,q)=1

the ¢-th cyclotomic polynomial. We denote w = ¢%™/% and let K be the cyclotomic field
Q(e*™1) = Q(w).

Let f € Q[X] be the monic minimal polynomial of wj; it has coefficients in Z and
divides ®, and also X9 — 1. Let g € Z[X] be the polynomial such that X7 —1 = fg.

1. Show that
q—1

[Ta-w=4q

a=1
Solution: Consider the polynomial X9 — 1, whose roots are 1 and w® for a =
1,...,9 — 1. Dividing X9 —1 by X — 1 we get the polynomial

X1-1
— Xl L xe24 ... X +1 1
% 1 + +o+ X+, (1)
but by factoring X9 — 1 as a product linear factors over C we get
-1
Xe-1 9
= X —w?). 2
xo1 ~ =) )

When X = 1, the right-hand side of (1) is ¢, whereas when X =1 the right-hand
side of (2) is precisely Hg:(l —w®), so we conclude the desired equality.

2. Let p be a prime number which does not divide ¢, and let p be a prime ideal in Zg
dividing pZy. Show that the elements (1,w,...,w? 1) are distinct modulo p.

C

Solution: Assume by contradiction that for some 0 < b < ¢ < ¢—1, w’ = w
modulo p. Then 1 = w® mod p, so that

c—b

1—w eEp
q—1
:>H(1—w“)6p
a=1
= q € Dp.

But then we have p,q € p with p and ¢ relatively prime, so this implies that 1 € p,
which contradicts the assumption that p is a prime ideal. Thus (1,w,..., w9 1)
are distinct modulo p.



3. Show that w? is also a root of f. (Hint: argue by contradiction that otherwi-
se g(wP) = 0 and use reduction modulo p and the previous question; recall that
if v € Zk/p is a root of the reduction of a polynomial in Z[X], then 2P is also a
root of the same polynomial.)

Solution: Consider the reductions f and g of f and g, respectively, modulo p. By
the previous question, f and § must have distinct roots.

Assume that f(wP) # 0. Since wP is a root of X9 — 1, it must therefore be a root
of g. Since g(wP) = 0, g(wP) = 0 € Zg /p. But since f(w) = 0 by assumption we
also have f(w) = 0 € Z /p and thus f(wP) = 0 € Zk /p, which contradicts the
fact that f and § must have distinct roots.

Thus f(wP) = 0.

4. Deduce that w® is a root of f for any a coprime to ¢, and conclude that f = ®,.
Solution: Note that for any prime p, since f is the monic minimal polynomial of w
and has w? as a root, f must also be the monic minimal polynomial of wP. Thus
we can repeat the above argument for different primes p, to get that for any primes

P1,- .-, Pk, all relatively prime to ¢, and any positive integers ey, ..., e, WP Pyt
is a root of f. Any a coprime to ¢ admits a factorization of this form, so w® is a
root of f.

Thus every root of ®, is a root of f, so ®,|f. We already have that f|®,, and both
are monic, so equality must hold.

2. Let q be a prime number. The goal of this exercise is to show that the ring of integers
of the cyclotomic field Q(e27/9) is Z[e*™/9]. Let w = %7/,

1. Prove that
Tr(l) =q—1, Tr(w) =—-1forl1<a<gqg-—1.

Solution: Consider the basis {1,..., w9 2} of Q(w) as a Q-vector space. Note that
Q(w) is a (¢ — 1)-dimensional Q-vector space, since ®, (using the notation from
Problem 1) is irreducible of degree g — 1.

Multiplication by 1 is described by the identity matrix, which has trace ¢ — 1, so

Tr(l) =q¢— 1.
Consider the matrix M, € GL(Q(w)) given by multiplication by w® for 1 < a <
q — 1. Each basis element in {1,...,w% 2} is taken to a different basis element

when multiplied by w® except for the element w?~ =%, for which we have
q—2
w - wd T =t = Zwb.
b=0

Thus the only nonzero element on the diagonal of M, is the —1 in the (¢ — 1 —
a,q — 1 — a)th position, so that Tr(w®) = —1.

2. Prove that for all a coprime to ¢, the element
w®—1

w—1




is a unit in Zg, and that 1 — w is not a unit in Zg. (Hint: use the formula from
question 1 of Exercise 1.)
Solution: Note that

w® —1

— —w w1

All powers of w are in Zg, so “:U:ll
ab=1 mod ¢. Then similarly

€ Zk. Let b be a positive integer such that

w® — 1
wa_l :wa(b_1)+wa(b_2)_|__{_wa_{_lGZK?
but
w® — 1 wab—l_wab—l_w—l_1
w—1 w—1 w—-1  w-1 "
SO “1’:__11 has an inverse in Zg and is thus a unit.

Now assume by contradiction that 1 — w is a unit in Zg. Since 117_1;’; is a unit in
Zg, we also know that 1 — w® is a unit in Zg for all a relatively prime to ¢, so
Hg;i(l — w®) must be a unit as well. But by problem (1.1), we have just shown
that ¢ is a unit in Zg, or equivalently that % € Zk. But % is not an algebraic
integer, so we have reached a contradiction. Thus 1 — w is not a unit in Zg.

. Prove that (1 —w)Zg | ¢Zk and that (1 —w)Zx NZ = qZ.

Solution: Since, by Exercise (1.1), we have (1 — w)|g, we must also have (1 —
w)ZlqZx. That is, if ¢z € qZ, then gz = (1—w) (1‘[3;5(1 - w“)) 2 e (1—w)Zg.
We have just shown that ¢Z C (1 —w)Zg and we know that ¢Z C Z, so qZ C (1 —
w)ZkNZ. Moreover, (1—w)ZkNZ is an ideal in Z, so since q is prime, (1—w)ZxNZ
is either ¢Z or Z itself. Assume by contradiction that (1 — w)Zg NZ = Z. Then
1 € (1 —w)Zk, so for some z € Zk we have 1 = (1 —w)z. But then (1 —w) is a
unit in Zg, which contradicts the previous part.

. Deduce that for all y € Zg, we have Tr((1 —w)y) € ¢Z.

Solution: Recall that Tr(x) € Z for € Zg, so for all y € Zg, we have Tr((1 —
w)y) € Z. By the previous part, it remains to show only that Tr((1 — w)y) €
(1 —w)Zk.

But Tr((1 — w)y) = > ccai@w)/q) (1 —w)y) = >, (1 — o(w))o(y). Note that
for all o, there exists an a relatively prime to ¢ such that o(w) = w®, which
in turn implies that (1 — o(w))o(y) = (1 — w) ((11_w o(y) € (1 — w)Zg. Thus
Tr((1 —w)y) € Zk, as desired.

. Find an element by of K such that for any

in K, we have Tr(bpx) = ap. Deduce that if x € Zg then a¢ € Z.



Solution: Write by = 1—va and assume that a; € Q. Then we can compute explicitly

(2 ')

q—2
( i+1)'

%y
1=0 q
If 1 <i<q-—2, then Tr(w') = Tr(w*) = —1, so that Tr(w’) — Tr(w**) = 0. If
i = 0, then Tr(w') = ¢ — 1 and Tr(w*) = —1, so that we have

Tr(boz) = %(Tr(l) — Tr(w))
agp
= —q = ao_
q

q
portion, Tr((1 —w)z) € ¢Z, so %Tr((l —w)x) € Z. Thus ag € Z.

6. Similarly, find the element b; such that, for any = as above, we have Tr(b;x) = a;,
and deduce that a; € Z for all 7. (Hint: consider w/x for suitable j.)

If x € Zk, then we have ag = Tr (l;ac) = %Tr((l — w)z). By the previous

Solution: Consider byw?™* for 1 < i < ¢ — 2. Then for any z as above,

q—2
, 1—
Tr(bow? 'z) = Tr Z a;

_w]

When j = i, we have w? "7 = w? = 1, which has trace ¢ — 1, and when j =i — 1,
we have w97+l = 9 = 1; all other traces in the above expression are —1, so
(—q)

ai—1
q

Tr(bow?! 'x) = %(q -14+1)+
q
= a; — Aj—1.

Thus choosing b; = by Zj’:o w?77 is the desired element. By repeating the argu-
ments from the previous two parts, this shows that a; € Z whenever x € Zg.

7. Conclude that Zg = Z[w].
Solution: Since w € Zg, we certainly have Z[w] C Zg. Now assume that z =
Zg:_g a;w' € Zy. By the previous two parts, a; € Z for all 4, so x € Z[w]. Thus
Zi C Zw], so equality holds.

3. In this exercise, we show that a naive adaptation of the previous argument can not work
when ¢ has more than one prime factor. Let ¢ > 1 be an integer which is not a prime
power (so it has at least two different prime factors), let w = €?™/¢ and K = Q(w).



1. Let X, be the set of integers a with 1 < a < ¢ —1 such that the order of w® in C*
is not a prime power. Show that

[[Ja-wy=1

acXy

(Hint: use the formula from Question 1 of Exercise 1 for ¢ and for p’-th roots of
unity, where v is the p-adic valuation of ¢.) Solution: Let v, be the p-adic valuation
of ¢q. The elements w® such that the order of w® in C* is a power of p are precisely
the p¥r-th roots of unity. By Exercise 1.1, these satisfy

p'P—1

H (1 o e27rib/p“1’) _ pvp'

b=1

Then once more by Exercise 1.1, we have

¢=[]0~w
a=1

= 1] I a-wy|x J[a-w

1 acX
pfilrzle ord(w®)|p®? !

= Hp”?x H(l—w“)

pJq acXy
prime
=q [] (0 —w".
acXy

By cancelling the gs on both sides of this identity we get the desired result.

2. Deduce that 1 —w is a unit in Zg (in contrast with Question 2 of Exercise 2).

Solution: The element w itself has order ¢, which by assumption is not a prime
power. Thus (1 — w)| Hanq(l —w®*) =1,s01—wis aunit in Zx with inverse

[Taex, (1 —w®).
a#l

4. Let K be a number field with [K : Q] > 2. Let p be a prime number. The goal of this
exercise is to give many examples of rings related to Zg but which are not Dedekind
domains, and to show this failure explicitly.

Let p be a prime number, and define A = Z + pZyi C Zk. Let
q=pACA,  p=plg.

1. Show that there is a Z-basis (w;)1<i<[k.q) of Zk such that wy = 1.

Solution: This can be done in several ways, but consider the Z-module quotient
Zi|Z. Let x € Zk \ Z have image T # 0 € Zg /7.



Assume by contradiction that z is a torsion element of minimal order m in Zg /Z;
that is, with mZ = 0 € Zg /Z. Then there exists n € Z with ma = n. Note that m
and n are relatively prime, since m‘r € 7 as well.
Thus there exist integers a and b with am + bn = 1, which implies that bmz =
bn = (1 — am), so that m(bx 4+ a) = 1. Thus bz +a = 1/m € Zg, so since m € Z
we must have m = £1, and thus z = 0 € Zg /Z, a contradiction.
We have shown in particular that Zg /Z has no torsion, so it must be a free Z-
module with Z-basis {wa,...,wy}. Then {1,ws,...,w,} is a Z-basis of Zg, and
n=[K:Q.
. Show that A is a subring of Zx and that p is an ideal in A and also in Zg such
that ¢ C p C A. Show also that p = qZx (i.e., the Zg-ideal generated by q is
equal to p).
Solution: The set A is certainly closed under addition and additive inverses; it
suffices to show that it is closed under multiplication. Let (n1 + pz1), (n2 +px2) be
two elements of A with ny,ne € Z and x1,z9 € Zg. Then (ny + pz1)(n2 + pra) =
ning + p(nixe + naxy + prizs). Since ning € Z and nixy + noxy + prize € Zi,
the product is also in A.
It is immediate that ¢ C p C A and that p is an ideal in Zg. Since A C Zg, the
product of any element of p and any element of A remains in p. Thus p C A is
also an ideal.
We have that qZx = pAZk C pZi = p; it remains to show the other inclusion.
But p € g since 1 € A, so p=pZg C qZk, as desired.
. Prove that

la/p’l =p,  Ip/al=p"U A/l =p,  |Zx/A|=p"h
(Hint: find Z-bases of these various abelian groups in terms of the basis of questi-
on 1.)
In particular, note that |A/p?| # |A/p|>.
Solution: Consider the Z-basis wy, ..., wy, of Zx with n = [K : Q] and w; = 1.
Then A has Z-basis {w1, pws, ..., pwy}, whereas p has Z-basis {pw1, ..., pw,}, p*
has Z-basis {p?w1, ..., p*w,}, and q has Z-basis {pwy, p*ws, ..., p?wy,}.
The quotient q/p? is thus generated by pw;, which is an element of order p, so that
\q/p?| = p. The quotient p/q is generated by {pws, ..., pw,}, where every element
has additive order p, and thus |p/q| = p"~!. The quotient A/p is generated by
wy = 1, which has order p, so |[A/p| = p. Finally the quotient Zx /A is generated
by {wa,...,w,}, each of order p, so that |Zg /A| = p" 1.
Notably,

[A/p%| =|A/p| - Ip/al - la/p?| = p"*,

whereas |A/p|? = p*.

. Show that p is a prime ideal in A. Show that if p,, ..., p; are prime ideals of A
such that p | p; - - - py, then p = p; for some j. (Hint: the last property is a general
fact about prime ideals in a commutative ring.)



Solution: Note that |A/p| = p, so in fact we must have |A/p| = Z/pZ. This is an
integral domain, so p is prime.
Let py, ..., p; be prime ideals of A and assume that p|p; - - - p;, or equivalently that
Py - - P = pr for some ideal » C A. Then p, - - - p;, C p. Assume by contradiction
that for all j, p 2 p,. Then for each j there exists a; € p; with a; & p. However,
by assumption a = ai - - - ap € p, which contradicts the primality of p.
It remains to show that p; is maximal, which implies that p; = p. Assume not. If
a € pj NZ, then aA C p;A C A, and both aA and A have rank n as Z-modules.
Thus A/p; is finite, and since it is a finite integral domain it must be a field, so
p; is maximal, and so p; = p as desired.
. Show that

{ZL‘EK | l‘pCp}:ZK,
and deduce that p C A is not principal as an ideal of A (although it is principal
as an ideal of Zg).
Solution: Let x € K with ap C p. Write z = )" | x;w; using the basis (w;); from
part 1, and note that the elements of Zy are precisely those with all x; € Z, and
the elements of pZy are precisely those with all x; € pZ.
If ¢ € Zg, then some x; &€ Z, so then px; € Z. Thus px & p, so xp ¢ p. On the
other hand pZy C Z is an ideal, so for all x € Zg, xp C p.
Assume by contradiction that p C A is principal, and let a € A be such that
p = aA. Define p := a~' A, so that pp = A. But then

xp C p < zpp C pp
S gAce A
S e A

But then we have shown that Zx C A, a contradiction.

. Show that gp = p?.

Solution: First note that p?> = p?Zy. Since p € q, gp D p*Zx = p>. Since q C p,
we have gp C p?, so equality holds.

. Show that q is an ideal of A which is not the product of prime ideals of A. (Hint:
assuming that g is a product of primes, show that we would have necessarily g = p*
for some integer k > 1; show using the previous results that this is not the case.)
Solution: Assume by contradiction that ¢ = p; -- - p;, for prime ideals py, ..., p;.
Then p?> = gp = p; - - ppp. Thus for each j, 10j|p2 by part (4), so for each j,
p; = p. Thus q = p* for some k > 1. Since |q/p| # 1, we cannot have k = 1. But
if £ > 2 then we must have |q/p?| = 1, which is also false. Thus we have reached
a contradiction, so q is not the product of prime ideals of A.
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