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Exercise Sheet 4

1. Let K be a number field of degree n = [K : Q|. For z € K, the norm of z, denoted N(z),
is defined to the determinant of the Q-linear map m,: K — K defined by m;(y) = zy.
(Note that N(z) is not necessarily > 0, even when K = Q.)

1. For K = Q(+/d), compute N(a + bv/d) as a function of the rational numbers a
and b.

Solution: Assume throughout that d is not a square, so that K # Q. Consider
the Q-basis {1, \/3} of K. In this basis, multiplication by a + bv/d is given by the

matrix
a bd
b al’

which has determinant a? — db?. Thus N(a + bv/d) = a® — db>.

2. Show that N defines a group homomorphism K* — Q*.

Solution: Note first that N(z) € Q for all z € K. Moreover, if z = a 4 bv/d and
N(x) =0, then a® = db®. Since d is not a square, a and b must both be 0, so that
2 = 0. Thus the norm defines a function N : K* — Q*.

It remains to show that this function is a group homomorphism. For two elements
x,y € K*, and for any z € K, we have (xy)z = 2(yz), so that as maps K — K, we
have mg, = mzom,. The determinant is multiplicative with respect to composition
of linear maps (that is, matrix multiplication), so

N (zy) = det(may) = det(mg)det(my) = N(z)N(y),

and thus N : K* — Q* is a group homomorphism.
3. Let £(K) be the set of embeddings of K in C. Show that

1eE(K)

Solution: Recall that the constant term of the characteristic polynomial of a matrix
M is precisely det(—M) = (—1)"det(M), where M is an n xn matrix. By Corollary
2.5.2, for z € K, the characteristic polynomial of m, is

[T -,

LeE(K)



so that

(—=1)"det(mz) = ] (—u(x))
= det(m,) = [] ),

where the second line follows from the first because |E£(K)| = n. This completes
the proof.

. Let € Zg. Show that N(x) € Z. Show also that x is a unit in Zj if and only if
N(z) e {-1,1}.

Solution: Since « is an algebraic integer, every embedding ¢ : K — C must have
the property that ((z) is also an algebraic integer, because ¢ fixes both Z and
polynomial equations. Thus [],c¢(x)t(2) is also an algebraic integer, so N(z) is
an algebraic integer. The norm N(z) is also the determinant of a matrix with
rational coefficients by definition, so N(z) € Q as well. But the only algebraic
integers in Q are in Z, so N(z) € Z whenever x € Zg.

If z is a unit in Zy, then there exists y € Zj; with 2y = 1. Thus N(z)N(y) =
N(xzy) = N(1) = 1, so the integers N(z) and N(y) are invertible and thus
N(z),N(y) € {£1}.

Finally assume that € Zj; with N(z) = £1; we want to show that « is a unit in
Zy. Any x is a root of its characteristic polynomial; since z € Zj;, this polynomial
has integer coefficients. Write

fX)=X"4ap, 1 X" 14+ X +ag

for this polynomial. As we saw in the problem (1.3), the constant term of this
polynomial satisfies ag = +=N(x), so ag = +1. Then consider

m
g(Y) = Zaoam—jyj = ag + agtm 1Y + -+ apa YL Y™,
=0

where here we are writing a,, := 1 and noting that a% = 1. The polynomial g(Y")
is monic and has integer coefficients, and ! is a root of Y. Thus the element
y =2~ ' € K is an algebraic integer, so y € Zx and thus z is a unit in Zg.

. Let x € Zg \ {0}. Show that there exists a Z-basis (e, ..., e,) of Zx and integers
ay | az |-+ | an such that

Tzl = a1Ze1 P - - - B anley,.

(Hint: use the classification of finitely-generated abelian groups.)

Solution: Consider the Z-module Z g /xZ . By the classification of finitely-generated
abelian groups,

Zi)alyg 270 ® (Z)anZ) @ - - & (Z)arZ),



where aq|as| - - - |ax are integers.

Note that N(x) € xZk, since N(x) is the constant term of the characteristic
polynomial of z, which has integer coefficients. Thus N(z) € xZx NZ, so xZk N7
is nonempty. For any y € Zg, this implies that N(x)y € 2Zp, so every element
y € L /xZy must be a torsion element. Thus b = 0.

Let €; € Zk /vZk represent an (arbitrary) generator of the factor Z/a;Z, and let
e; € Zk be equivalent to €; modulo x. Then {ey, ..., e;} must be Z-independent,
and k < n. Let M be the Z-submodule of Z generated by eq,...,er. Note that
any y € Zg with y € M satisfies y € xZp.

Assume by contradiction that Zg /M is not free, and let y € Zi \ M and m € Z>o
be such that y ¢ M but my € M. Since y € xZg, my € M NxZyx = a1Ze; ®
- @ apZey. Write my = aibie; + - -+ + agbger. Then mla;b; for all 4, but then
Yy = i%b"ei € M, a contradiction.

Thus Zg /M is free, so eq, ..., e, can be extended via f1,..., fn_x to a Z-basis of
ZK/M Then

Zic/aLi = (Z/T) & --- & (Z/T) & (Z]aiT) & (Z/aT)

and
2l =LfL D D Lfp_r D arley ® - apley,
where 1| -+ [1|a1| - - - |ay, as desired.
. Deduce that for all = € Zg, we have |N(z)| = |zZk|, where the right-hand side is
the norm of a principal ideal.

Solution: Taking the norm of a principal ideal, we have by the previous question
that

n
|IL‘ZK| = H Qj.
j=1

Let {e;}}_; be the basis described in the previous question. Consider the elements
fi,..., fn of Zk such that xf; = e; for all j. Note that the f;’s are a Q-basis of
K, since multiplication by x is an invertible map on K, and thus Q- (and thus Z-)
linearly independent. Moreover, for each z € Zg, there exist coefficients b; € Zg
such that

xz = biarer + -+ + bpanen = x(brfr + -+ bnfn),

and thus z = by f1 + - - - + b, fn, so the Z-span of the f;’s is Zg. Thus the f;’s form
a Z-basis of Zk. Let S be the invertible change of basis matrix from e; to f;; then
written in the basis ej, we have

+a; 0 .- 0
0 +ay --- 0



n

[N (2)| = |det(mg)| = [ det(my)[| det(S)| = | det(msS H = |2Zk]|,

where we are using that |det(S)| = 1 by invertability of S. This completes the
argument.

2. A number field K is said to be euclidean (with respect to the norm) if, for any = and y
in Zg, with y # 0, there exists ¢ and r in Zg with |[N(r)| < |N(y)| such that x = qy+7.

1. Show that if K is euclidean, then the class group of K is trivial.

Solution: Let I C Zk be an ideal. We would like to show that I is principal. By
the previous problem, for all nonzero z € I, N(z) € Z and N(z) # —1,0,1 (since
if N(z) = £1 then I contains a unit). Let a € I be a nonzero element such that
|N(a)| is minimal. Then aZg C I, so it remains to show that I C aZk. Let b e I
be an arbitrary nonzero element. Since K is euclidean, there exist ¢ and r with
b =aq+r and [N(r)| < |N(a)|. But then r € I, so by the minimality of a, we
must have N(r) = 0 and thus » = 0. This implies that b = aq, and thus b € aZg,
so we have I C aZg. Thus I is principal, as desired.

2. Show that Q(v/2) and Q(y/—2) are euclidean.

Solution: For each we provide a euclidean algorithm, that is, an algorithm for
producing ¢ and 7.

Let a + byv/—2,c+ dv/—2 € Z[/—2]. Let e, f € Q be such that

a+b\/—72_
m-e—i—f\/TQ.

Now pick ¢, s € Z such that |e —¢| <1/2 and |f — s| < 1/2. Then

a+b/=2=(c+dv-2)(e+ fvV-2)
= (c+dvV=-2)(g+sV=2+(c—q) +(f —5)V-2)
= (c+dV=2)(q+sV=2) + (c+dV=2)((e = q) + (f — 5)V-2).

Note that (c+ dv/—2)(q+ sv/—2) € Zg, so the second product must be as well. It
suffices to show that N(c+ dv/=2) > N((c+dv/=2)((e — q) + (f — s)v/—2)). But
N((e—q)+(f—s)vV/—2) =< (1/2)?+2(1/2)? = 3/4 < 1, so by multiplicativity of the
norm this inequality must hold. Thus ¢+sv/—2 and (c+dv/—2)((e—q)+(f—s)v/—2)
are the desired values.

The argument for Z[v/2] is nearly identical, with perhaps the one difference being
that for e —¢| <1/2 and |f — s| < 1/2, we have

IN((e—a) +(f =s)V2)| = (e —q)” —2(f —s)’| < 1/2< 1.



3. Let K be a euclidean number field. Show that there exists a non-zero element
0 € Zg, which is not a unit, and has the following property: the restriction to
Zy J {0} of the reduction map modulo ¢ is surjective (i.e., any element of Zg is
congruent modulo § to either 0 or a unit of Zg.)

Solution: Define § € Zj to be an element of minimal norm among non-units in
Zy. Let a € Zk be an arbitrary element. Since K is euclidean there exist ¢,r € Zg
such that a = ¢d + r and |N(r)| < |N(0)|. Since § has minimal norm, r must be
either zero or a unit. But this directly implies that a is congruent modulo § either
to zero or to a unit of Z.

4. Determine all possible choices of the element § of the previous question for K = Q,
and determine one choice for K = Q(i)?

Solution: First say K = Q, so that Zx = Z. The units of Z are +1, so we would
like to find 6 such that every element of Z/0Z is congruent to 0 or +1. Thus there
can be at most 3 elements of Z/0Z, and equivalently |§| < 3. Since § is not a unit,
0 € {£2,+£3}; any of these choices work.

Now let K = Q(i + 1). Let § = 1+ 4. Then (1 + i)Z[i] contains 1 + ¢ as well as
2 = (1+14)(1 —1i) and 2i = (1 +i)?, so that 0 and 1 are a set of representatives of
Z[i)/(1 + 1)Z][i], as desired.

5. Deduce that Q(1/—19) and Q(v/—163) are not euclidean. (Hint: determine the units
in the corresponding rings of integers.) Note: one can show that both of these fields
have trivial class group, so the statement in Question 1 is not an equivalence.

Solution: Start with Q(v/—19), which has ring of integers Zi9 = Z {Hi V{lg} The

norm of a + b <1+7 {19> € Zig is a® + ab + 5b%, and by for example the quadratic

equation one can see that the only units in Z,9 are £1.

Assume by contradiction that Q(1/—19) is not euclidean and define § as in part 4.
Then |0Z19| < 3, where [0Z19| is the norm of the ideal, since each congruence class
must be represented by +1 or 0. The only possible residue rings of size < 3 are
modulo primes dividing 2 and 3, but since —19 =1 mod 4, 2 is inert in Q(1/—19).

Also, —19 =2 mod 3 and thus (_Tlg) = —1, so 3 is also inert in Zg.

The argument for Q(v/163) is nearly identical, so we omit it.

3. Prove that any prime number p such that p = 1mod 8 or p = 7 mod 8 is of the
form a? — 2b%, where a and b are integers. Show that there are infinitely many such
representations. (Hint: use the field Q(v/2).)

Solution: Let p be a prime congruent to 1 or 7 mod 8. Then (for example by exercise

sheet 2, problem 2.4) the Legendre symbol (%) = 1. By example 2.7.5, p is unramified
and totally split in Q(v/2). Let p = p1p2 as ideals in Z[v/2]. Since Z[/2] has class
number 1 (for example because it is euclidean), there exists a generator m; of pq,
which has norm p. Then for some ag, by € Z, m1 = ag + bpv/2. Since 7 is a generator,

|N(m1)| = |mZ[V2]| = p, so a3 — 2b3 = +p.



Let u be a fundamental unit of Z[v/2] (say u = 1+ +/2), and note that N(u) = —1. For
all n € N, u"m; represent pairwise distinct elements of Z[\/ﬂ, so if u"my = an + bpV/2,
we have (a;,b;) # (aj,bj) for all i # j. But N(u"m) = a2 — 2b2 = (—1)"N(m), so
either odd values or even values of n furnish infinitely many solutions to a? — 2b> = p.

4. Let d be a squarefree positive integer such that —d Z 1 mod 4. Assume that d is not
a prime number. The goal of this exercise is to prove that the class group of K =

Q(v/—d) = Q(iv/d) is not trivial.

1. Prove that there exist integers a, b with 1 < a < b such that d = ab.
Solution: Since d is not prime, d admits a factorization d = ab where a and b
are nonunits, so we can assume that 1 < @ and 1 < b. Assume without loss of
generality that a < b. If @ = b, then d = a?, which contradicts d being squarefree,
so a < b as desired.

2. Let w and v # 0 be integers. Show that any element of (u 4+ vv/—d)Zg has norm
> d.
Solution: The norm of = +yv/d € Zg is 2% + dy?, which is always nonnegative and

in fact > 1 for 2 and y not both zero. If v # 0, then v? > 1. Thus for any = € Zg
nonzero,

N((u+vvV—dz) > N(u+vvV—d)N(z) > u? + dv® > dv® > d,

as desired.

3. Prove that the ideal generated by a and iv/d in Zg is not principal.
Solution: Let I be the ideal generated by a and iv/d. Note that 1 ¢ I, since for
any x + iy\/a, 2+ iwvd € Ly,

1= (z+iyVd)a+ (z 4 iwVd)ivd & 1 = (az — wd) + (ay + 2)iVd
ar —wd =1
=

ay + z =0.
But ax — wd = a(z — wb) # 1 since a > 1, so this is impossible.
We now show that I is not principal. Assume by contradiction that I = (z +
iyV/d)Zg. Then | N (z+iy\/d)| = |I|, which must divide [N (a)| = a? and | N (ivd)| =
d. Since d is squarefree, ged(a,b) = 1, and ged(a?,d) = a. Thus |N(z + iyv/d)|
divides a < d. By part 2, this implies that y = 0; otherwise |N(z + iyv/d)| > d.

Thus I = 2Z with 2 € Z. Since iv/d € I, this implies that z = 1 and I = Zg, a
contradiction.

5. The goal of this exercise is to prove that the Fermat equation 2% + 3 = 2 has no
integral solution with xyz # 0, which was first proved by Euler. This is a fairly long
exercise — the more interesting part start at Question 3, and the first two questions
may be assumed without proof.



We denote w = e27/3 = (=1 +iy/3)/2 and K = Q(v/=3) = Q(w). We have Z = Z[w].
We consider the equation
2?4+ y? = u? (1)

where u € Zj is a parameter and the unknowns (z,y, z) are in Zg.

1. Show that Zg is a euclidean domain and that Z% = {—1,1,w,w?, —w, —w?}.
Solution: Note that for a,b € Z, N(a + bw) = (a + bw)(a + bw) = a® — ab + b?.
We now show that Zy is euclidean; this argument is very similar to problem 2.2.
For a + bw,c+ dw € Zk, let e, f € Q such that

Let ¢q,s € Z such that |e — ¢| < % and |f — s| < %, and consider the elements
% =q+sweEZk and 90 = a+bw — »(c+ dw) € Zg. The elements » and p satisfy
the constraints on ¢ and r respectively if we can show that |N ()| < |N(c + dw)|.

But

N(c+ dw)||N (25 — 5)]
N(e+dw)[[N((e —q) + (f — s)w)]
= |N(c+dw)ll(e = a)* = (e = )(f — 5) + (f — 5)?

3
< E\N(c—i-dw)\ < |N(c+ dw).

[N ()| =

By problem 1.4, a + bw € Zg is a unit if and only if N(a 4+ bw) = +1, which
happens if and only if a® — ab + b*> = +1. If a®> — ab+ b*> = 1, then

b0 402 1)  bE V4 —3b?
B 2 B 2 '
This has (real) integer solutions only if b = 0 or b = +£1. If b = 0, then a = +1,
corresponding to the units +1; if b = 1, then ¢ = 0 or a = 1, corresponding to
the units w and 1 + w = —w? respectively; and if b = —1, then a = —1 or a = 0,
corresponding to the units —1 — w = w? and —w respectively.

a

2. Let A = 1 —w. Show that A\Zf is a prime ideal with norm 3. In particular, the field
Z | \Zk is isomorphic to Z/3Z. We denote by v the A-adic valuation on (non-zero)
ideals.

Solution: First note that w =1 mod A, and thus

3=1+4+2w=14w+w?=0 mod \
Then for any a,b € Z,
a+bw=a+b mod )\,

and thus by combining both of these we get that a + bw modulo X is given by the
value of a + b modulo 3. Thus Zg /A is either trivial or isomorphic to Z/3Z.
Since N(A\) = N(1 —w) =1+ 1+1 =3, Zx /N is isomorphic to Z/3Z. Since
this is a domain, AZg must be prime.



3. Show that if z € Zy satisfies + = 1 mod A, then 2> = 1 mod \*. (Hint: write
23— 1= (2 —1)(z — w)(x — w?) and use the fact that w? =1 mod \.)
Solution: Since z =1 mod A, we also have £ = w and z = w? mod A, so A divides
each of (z — 1), (r — w), and (z — w?).
Now note that J”T_l +1= % = 5%, and similarly 5% + 1 = ””‘—;’2 Thus the
three values x/\;l, ¥, and x*)\‘”z € Zx must represent the three different elements
of Zy /L, so one of these three values is divisible by A. Equivalently, one of x —1,
2 —w, and = — w? is divisible by A2, so there are at least four factors of A dividing
(z—1)(z —w)(r —w?) =23 — 1. Thus 23 =1 mod \*.

4. Show that (1) has no solution with A not dividing zyz. (Hint: reduce modulo A
and check cases.)

Solution: Note that the same argument in the previous part with the polynomial
3+ 1= (r+1)(z+ w)(z + w?) shows that if z = —1 mod A, then 23 = —1
mod M.

Assume by contradiction that z,y, z satisfy (1) and A does not divide zyz. Then
x,y, z are all nonzero mod \. By multiplying x, y, and z by —1 if necessary, we
can assume that £ =1 mod .

Assume first that y = —1 mod A. Then

u? =23+ =1-1=0 mod \,

so by multiplying both sides by u ™!
a contradiction.
Now assume that y = 1 mod . Then 23 + 4> = 2 mod A\*. We also know that
2z = +1 mod A, and thus 22 = +£1 mod A, so 2 = +u mod \* or equivalently
M|(2 £ u). But this is impossible; for example note that N(\*) = N(\)* = 81,
whereas N(2 +u) € {1,3,7,9} for the units in Zg.

5. Let (z,y,z) be a solution of (1) for a given u € Zj with v(zy) = 0. Show
that v(z) > 2. (Hint: use the previous question and reduce modulo A2.)

we get 22 =0 mod A\*, and thus A|z, so \|zyz,

Solution: From the previous question, we can assume that x =1 mod A, and the
case when y = 1 mod A is impossible, so ¥y = —1 mod A. Then as before this
implies that 2> =0 mod A*. Thus 3v(z) > 4, so v(z) > 2.

6. We fix from now on a solution (z,y, z) of (1) for a given u € Zj with v(zy) =0
and x coprime to y. Show that one of x + v,  + wy or & + w?y has A-valuation
> 2, and that one may assume that = + y has this property, which we consider to
be the case from now on.

Solution: As before, we know that

3+ y3 =0 mod \*
= (z+y)(z+wy)(z+w?y) =0 mod \*
= v(x+y) +v(r+wy) + oz +w’y) >4

Thus at least one of the three must be > 2.



Note that we can always replace y by wy or w?y, and the triple (z,y, 2) is a solution
of (1) if and only if (x,wy,2) and (z,w?y, ) are, because y° = (wy)® = (w?y)>.
This substitution permutes transitively the values  + y, « + wy, and z + w?y, so
we can always fix (z,y, z) satisfying this question and such that v(z +y) > 2.

. Show then that v(x 4+ wy) = v(x + w?y) = 1 and that v(z + y) = 3v(z) — 2.
Solution: Since
r+wy=z+y+ Ay,

we can reduce modulo \? to get
z+wy =Xy mod \2.

Since y = +1 Z 0 mod A\, Ay Z 0 mod A2, Thus \(x + wy) but A2 { (z + wy),
so v(z + wy) = 1. By the same argument with —Ay in place of +Ay we get that
v(z + wy) = 2.

Since (z,vy, z) are a solution to (1), we have

z? +y® = u2?

= (z+y) (@ +wy)(z +w?y) = uz
= v(z +y) + vz +wy) +v(z + w?y) = v(u) + 3v(2).

3

Since A is prime and w is a unit, v(u) = 0. Then

= v(z+y)+ 2= 3v(z)
=v(r+y) =3v(z) — 2,

as desired.

. Show that ged(z + y, z +wy) = ged(x + vy, r + w?y) = ged(z 4+ wy, v +w?y) = Mk
(where the geds are in the sense of ideals).

Solution: Let 7 be any irreducible with (7) # (A). Assume by contradiction that
7|(z+y) and 7|(z+wy). Then 7|(1—w)y = Ay, and similarly 7|(z+wy—w(z+y)) =
(1 —w)z = Az, so since () # (A\) we have |y and 7|z. But x is coprime to y, a
contradiction.

Since v(x + y),v(x + wy), and v(x + w?y) are all > 1, all of these gcds must be
contained in AZg but not in A\2°Zg; thus they are all \Zg.

. Deduce that there exist units (£,7,9) and elements (a, b, c) of Zg, each coprime
to A, such that
€AY L wnbP A + w29 = 0.

(Hint: use unique factorization in Zg and combine the resulting expressions for
T4y, z+wy z+wy.)

Solution: Since the three factors of 3 + y3(= u2?®) share no prime factors apart
from A, but the product is a cube, each prime appearing in the prime factorization
of each of (z+), (x+wy), and (z+w?y) must appear to a cubic power. By unique



10.

11.

factorization, there must therefore exist units &, 7, and 9 and elements a, b, c € Zg
coprime to A such that

T4y = EaP N,
T+ wy = nb3\,
T+ wly = VAN

Thus

€PN Y LA + WPIEN = (2 +y) + w(z + wy) + Wiz + w?y)
=(l+w+w)z+ 1+ +w)y
=0,

as desired.

Deduce that there exist units € and € and elements r, s and ¢ € Zg such that
3 4 es® = €'t

and v(t) = v(z) — 1.
Solution: We can divide the previous equation by A and do some algebraic mani-
pulations, recalling that v(z + y) = 3v(2) — 2, to get

€PNV EH=1 4 b 4 Wi = 0
= wnb® + Wi = —£a3)\3(”(z)_1)

= b 4wy e = —an_lﬁ(a)\”(z)_l)S.

Choosing r = b, s = ¢, t = aX*@~1 and ¢ = w19 and ¢ = —w?n~1¢, satisfies
the constraint. Note that a and X are relatively prime, so that v(t) = v(A*(®)~1) =
v(z) — 1.

Show that € € {—1, 1} and deduce that there is a solution (z/,y/, ) of (1), possibly
for a different unit than w, with v(2") = v(z) — 1.

Solution: Since r = a and s = ¢ are relatively prime to A, we must have r = +1
mod A and thus 7 = £1 mod A*, and the same for s. Also, v(2) > 2, so v(t) > 1
and v(¢3) > 2. Thus

P 4+esP =0 mod N\

= +1+e=0 mod \°

so that A?|(e & 1). By looking at the set of units individually and, for example,
comparing norms, one can see that this is only possible when ¢ £ 1 = 0, or when
€==1.

If € = +1 then € = €3, so by choosing 2/ = r, iy = s, and 2/ = t, we get a different
solution of (1), possibly for a different unit than w, with v(z") = v(z) — 1.



12. Conclude that (1), and the Fermat equation with exponent 3, have no solutions
with zyz # 0. (This method of proof is known as infinite descent, and has its origin
in the proof by Fermat himself that the equation for exponent 4 has no solution,
which is easier as it does not require any algebraic number theory.)

Solution: Note that shared factors of # and y must also be shared by z and thus can
be divided out, so it suffices to consider solutions with z and y relatively prime.
We can also assume without loss of generality that v(zy) = 0; if say A|x, then
23 = (—y)® + u2z?, and by the same argument in part 11 we have u = +1, so we
have a new solution (—y,+z,x) where A does not divide either of the first two
coordinates.

We showed in part 5 that v(z) > 2 for any such solution, so there exists a minimum
attained value of v(z) among these solutions. But we have also shown that a
solution (2,4, 2’) exists with v(z") < v(2), a contradiction.
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