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Exercise Sheet 4

1. Let K be a number field of degree n = [K : Q]. For x ∈ K, the norm of x, denoted N(x),
is defined to the determinant of the Q-linear map mx : K → K defined by mx(y) = xy.
(Note that N(x) is not necessarily ≥ 0, even when K = Q.)

1. For K = Q(
√
d), compute N(a + b

√
d) as a function of the rational numbers a

and b.
Solution: Assume throughout that d is not a square, so that K ̸= Q. Consider
the Q-basis {1,

√
d} of K. In this basis, multiplication by a+ b

√
d is given by the

matrix [
a bd
b a

]
,

which has determinant a2 − db2. Thus N(a+ b
√
d) = a2 − db2.

2. Show that N defines a group homomorphism K× → Q×.
Solution: Note first that N(x) ∈ Q for all x ∈ K. Moreover, if x = a + b

√
d and

N(x) = 0, then a2 = db2. Since d is not a square, a and b must both be 0, so that
x = 0. Thus the norm defines a function N : K× → Q×.
It remains to show that this function is a group homomorphism. For two elements
x, y ∈ K×, and for any z ∈ K, we have (xy)z = x(yz), so that as maps K → K, we
have mxy = mx◦my. The determinant is multiplicative with respect to composition
of linear maps (that is, matrix multiplication), so

N(xy) = det(mxy) = det(mx)det(my) = N(x)N(y),

and thus N : K× → Q× is a group homomorphism.

3. Let E(K) be the set of embeddings of K in C. Show that

N(x) =
∏

ι∈E(K)

ι(x).

Solution: Recall that the constant term of the characteristic polynomial of a matrix
M is precisely det(−M) = (−1)ndet(M), where M is an n×n matrix. By Corollary
2.5.2, for x ∈ K, the characteristic polynomial of mx is∏

ι∈E(K)

(X − ι(x)),



so that

(−1)ndet(mx) =
∏

ι∈E(K)

(−ι(x))

⇒ det(mx) =
∏

ι∈E(K)

ι(x),

where the second line follows from the first because |E(K)| = n. This completes
the proof.

4. Let x ∈ ZK . Show that N(x) ∈ Z. Show also that x is a unit in Z×
K if and only if

N(x) ∈ {−1, 1}.
Solution: Since x is an algebraic integer, every embedding ι : K → C must have
the property that ι(x) is also an algebraic integer, because ι fixes both Z and
polynomial equations. Thus

∏
ι∈E(K) ι(x) is also an algebraic integer, so N(x) is

an algebraic integer. The norm N(x) is also the determinant of a matrix with
rational coefficients by definition, so N(x) ∈ Q as well. But the only algebraic
integers in Q are in Z, so N(x) ∈ Z whenever x ∈ ZK .
If x is a unit in Z×

K , then there exists y ∈ Z×
K with xy = 1. Thus N(x)N(y) =

N(xy) = N(1) = 1, so the integers N(x) and N(y) are invertible and thus
N(x), N(y) ∈ {±1}.
Finally assume that x ∈ Z×

K with N(x) = ±1; we want to show that x is a unit in
Z×
K . Any x is a root of its characteristic polynomial; since x ∈ Z×

K , this polynomial
has integer coefficients. Write

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0

for this polynomial. As we saw in the problem (1.3), the constant term of this
polynomial satisfies a0 = ±N(x), so a0 = ±1. Then consider

g(Y ) =
m∑
j=0

a0am−jY
j = a0 + a0am−1Y + · · ·+ a0a1Y

m−1 + Y m,

where here we are writing am := 1 and noting that a20 = 1. The polynomial g(Y )
is monic and has integer coefficients, and x−1 is a root of Y . Thus the element
y = x−1 ∈ K is an algebraic integer, so y ∈ ZK and thus x is a unit in ZK .

5. Let x ∈ ZK \ {0}. Show that there exists a Z-basis (e1, . . . , en) of ZK and integers
a1 | a2 | · · · | an such that

xZK = a1Ze1 ⊕ · · · ⊕ anZen.

(Hint: use the classification of finitely-generated abelian groups.)
Solution: Consider the Z-module ZK/xZK . By the classification of finitely-generated
abelian groups,

ZK/xZK
∼= Zb ⊕ (Z/a1Z)⊕ · · · ⊕ (Z/akZ),



where a1|a2| · · · |ak are integers.
Note that N(x) ∈ xZK , since N(x) is the constant term of the characteristic
polynomial of x, which has integer coefficients. Thus N(x) ∈ xZK ∩Z, so xZK ∩Z
is nonempty. For any y ∈ ZK , this implies that N(x)y ∈ xZK , so every element
ȳ ∈ ZK/xZK must be a torsion element. Thus b = 0.
Let ēi ∈ ZK/xZK represent an (arbitrary) generator of the factor Z/aiZ, and let
ei ∈ ZK be equivalent to ēi modulo x. Then {e1, . . . , ek} must be Z-independent,
and k ≤ n. Let M be the Z-submodule of ZK generated by e1, . . . , ek. Note that
any y ∈ ZK with y ̸∈ M satisfies y ∈ xZK .
Assume by contradiction that ZK/M is not free, and let y ∈ ZK \M and m ∈ Z≥2

be such that y ̸∈ M but my ∈ M . Since y ∈ xZK , my ∈ M ∩ xZK
∼= a1Ze1 ⊕

· · · ⊕ akZek. Write my = a1b1e1 + · · · + akbkek. Then m|aibi for all i, but then
y =

∑
i
aibi
m ei ∈ M , a contradiction.

Thus ZK/M is free, so e1, . . . , ek can be extended via f1, . . . , fn−k to a Z-basis of
ZK/M . Then

ZK/xZK = (Z/Z)⊕ · · · ⊕ (Z/Z)⊕ (Z/a1Z)⊕ (Z/akZ)

and
xZK = Zf1 ⊕ · · · ⊕ Zfn−k ⊕ a1Ze1 ⊕ · · · ⊕ akZek,

where 1| · · · |1|a1| · · · |an, as desired.

6. Deduce that for all x ∈ ZK , we have |N(x)| = |xZK |, where the right-hand side is
the norm of a principal ideal.
Solution: Taking the norm of a principal ideal, we have by the previous question
that

|xZK | =
n∏

j=1

aj .

Let {ej}nj=1 be the basis described in the previous question. Consider the elements
f1, . . . , fn of ZK such that xfj = ej for all j. Note that the fi’s are a Q-basis of
K, since multiplication by x is an invertible map on K, and thus Q- (and thus Z-)
linearly independent. Moreover, for each z ∈ ZK , there exist coefficients bi ∈ ZK

such that
xz = b1a1e1 + · · ·+ bnanen = x(b1f1 + · · ·+ bnfn),

and thus z = b1f1 + · · ·+ bnfn, so the Z-span of the fi’s is ZK . Thus the fi’s form
a Z-basis of ZK . Let S be the invertible change of basis matrix from ej to fj ; then
written in the basis ej , we have

mxS =


±a1 0 · · · 0
0 ±a2 · · · 0
...

...
. . .

...
0 0 · · · ±an,





|N(x)| = |det(mx)| = |det(mx)||det(S)| = | det(mxS)| =
n∏

j=1

aj = |xZK |,

where we are using that | det(S)| = 1 by invertability of S. This completes the
argument.

2. A number field K is said to be euclidean (with respect to the norm) if, for any x and y
in ZK , with y ̸= 0, there exists q and r in ZK with |N(r)| < |N(y)| such that x = qy+r.

1. Show that if K is euclidean, then the class group of K is trivial.
Solution: Let I ⊂ ZK be an ideal. We would like to show that I is principal. By
the previous problem, for all nonzero x ∈ I, N(x) ∈ Z and N(x) ̸= −1, 0, 1 (since
if N(x) = ±1 then I contains a unit). Let a ∈ I be a nonzero element such that
|N(a)| is minimal. Then aZK ⊂ I, so it remains to show that I ⊂ aZK . Let b ∈ I
be an arbitrary nonzero element. Since K is euclidean, there exist q and r with
b = aq + r and |N(r)| < |N(a)|. But then r ∈ I, so by the minimality of a, we
must have N(r) = 0 and thus r = 0. This implies that b = aq, and thus b ∈ aZK ,
so we have I ⊂ aZK . Thus I is principal, as desired.

2. Show that Q(
√
2) and Q(

√
−2) are euclidean.

Solution: For each we provide a euclidean algorithm, that is, an algorithm for
producing q and r.
Let a+ b

√
−2, c+ d

√
−2 ∈ Z[

√
−2]. Let e, f ∈ Q be such that

a+ b
√
−2

c+ d
√
−2

= e+ f
√
−2.

Now pick q, s ∈ Z such that |e− q| ≤ 1/2 and |f − s| ≤ 1/2. Then

a+ b
√
−2 = (c+ d

√
−2)(e+ f

√
−2)

= (c+ d
√
−2)(q + s

√
−2 + (e− q) + (f − s)

√
−2)

= (c+ d
√
−2)(q + s

√
−2) + (c+ d

√
−2)((e− q) + (f − s)

√
−2).

Note that (c+ d
√
−2)(q+ s

√
−2) ∈ ZK , so the second product must be as well. It

suffices to show that N(c+ d
√
−2) > N((c+ d

√
−2)((e− q) + (f − s)

√
−2)). But

N((e−q)+(f−s)
√
−2) =≤ (1/2)2+2(1/2)2 = 3/4 < 1, so by multiplicativity of the

norm this inequality must hold. Thus q+s
√
−2 and (c+d

√
−2)((e−q)+(f−s)

√
−2)

are the desired values.
The argument for Z[

√
2] is nearly identical, with perhaps the one difference being

that for |e− q| ≤ 1/2 and |f − s| ≤ 1/2, we have

|N((e− q) + (f − s)
√
2)| = |(e− q)2 − 2(f − s)2| ≤ 1/2 < 1.



3. Let K be a euclidean number field. Show that there exists a non-zero element
δ ∈ ZK , which is not a unit, and has the following property: the restriction to
Z×
K ∪ {0} of the reduction map modulo δ is surjective (i.e., any element of ZK is

congruent modulo δ to either 0 or a unit of ZK .)
Solution: Define δ ∈ Z×

K to be an element of minimal norm among non-units in
Z×
K . Let a ∈ ZK be an arbitrary element. Since K is euclidean there exist q, r ∈ ZK

such that a = qδ + r and |N(r)| < |N(δ)|. Since δ has minimal norm, r must be
either zero or a unit. But this directly implies that a is congruent modulo δ either
to zero or to a unit of ZK .

4. Determine all possible choices of the element δ of the previous question for K = Q,
and determine one choice for K = Q(i)?
Solution: First say K = Q, so that ZK = Z. The units of Z are ±1, so we would
like to find δ such that every element of Z/δZ is congruent to 0 or ±1. Thus there
can be at most 3 elements of Z/δZ, and equivalently |δ| ≤ 3. Since δ is not a unit,
δ ∈ {±2,±3}; any of these choices work.
Now let K = Q(i + 1). Let δ = 1 + i. Then (1 + i)Z[i] contains 1 + i as well as
2 = (1 + i)(1− i) and 2i = (1 + i)2, so that 0̄ and 1̄ are a set of representatives of
Z[i]/(1 + i)Z[i], as desired.

5. Deduce that Q(
√
−19) and Q(

√
−163) are not euclidean. (Hint: determine the units

in the corresponding rings of integers.) Note: one can show that both of these fields
have trivial class group, so the statement in Question 1 is not an equivalence.

Solution: Start with Q(
√
−19), which has ring of integers Z19 = Z

[
1+

√
−19
2

]
. The

norm of a+ b
(
1+

√
−19
2

)
∈ Z19 is a2 + ab+ 5b2, and by for example the quadratic

equation one can see that the only units in Z19 are ±1.
Assume by contradiction that Q(

√
−19) is not euclidean and define δ as in part 4.

Then |δZ19| ≤ 3, where |δZ19| is the norm of the ideal, since each congruence class
must be represented by ±1 or 0. The only possible residue rings of size ≤ 3 are
modulo primes dividing 2 and 3, but since −19 ≡ 1 mod 4, 2 is inert in Q(

√
−19).

Also, −19 ≡ 2 mod 3 and thus
(−19

3

)
= −1, so 3 is also inert in Z19.

The argument for Q(
√
163) is nearly identical, so we omit it.

3. Prove that any prime number p such that p ≡ 1 mod 8 or p ≡ 7 mod 8 is of the
form a2 − 2b2, where a and b are integers. Show that there are infinitely many such
representations. (Hint: use the field Q(

√
2).)

Solution: Let p be a prime congruent to 1 or 7 mod 8. Then (for example by exercise
sheet 2, problem 2.4) the Legendre symbol

(
2
p

)
= 1. By example 2.7.5, p is unramified

and totally split in Q(
√
2). Let p = p1p2 as ideals in Z[

√
2]. Since Z[

√
2] has class

number 1 (for example because it is euclidean), there exists a generator π1 of p1,
which has norm p. Then for some a0, b0 ∈ Z, π1 = a0 + b0

√
2. Since π1 is a generator,

|N(π1)| = |π1Z[
√
2]| = p, so a20 − 2b20 = ±p.



Let u be a fundamental unit of Z[
√
2] (say u = 1+

√
2), and note that N(u) = −1. For

all n ∈ N, unπ1 represent pairwise distinct elements of Z[
√
2], so if unπ1 = an + bn

√
2,

we have (ai, bi) ̸= (aj , bj) for all i ̸= j. But N(unπ1) = a2n − 2b2n = (−1)nN(π1), so
either odd values or even values of n furnish infinitely many solutions to a2 − 2b2 = p.

4. Let d be a squarefree positive integer such that −d ̸≡ 1 mod 4. Assume that d is not
a prime number. The goal of this exercise is to prove that the class group of K =
Q(

√
−d) = Q(i

√
d) is not trivial.

1. Prove that there exist integers a, b with 1 < a < b such that d = ab.
Solution: Since d is not prime, d admits a factorization d = ab where a and b
are nonunits, so we can assume that 1 < a and 1 < b. Assume without loss of
generality that a ≤ b. If a = b, then d = a2, which contradicts d being squarefree,
so a < b as desired.

2. Let u and v ̸= 0 be integers. Show that any element of (u + v
√
−d)ZK has norm

≥ d.
Solution: The norm of x+ y

√
d ∈ ZK is x2+ dy2, which is always nonnegative and

in fact ≥ 1 for x and y not both zero. If v ̸= 0, then v2 ≥ 1. Thus for any x ∈ ZK

nonzero,

N((u+ v
√
−dx) ≥ N(u+ v

√
−d)N(x) ≥ u2 + dv2 ≥ dv2 ≥ d,

as desired.

3. Prove that the ideal generated by a and i
√
d in ZK is not principal.

Solution: Let I be the ideal generated by a and i
√
d. Note that 1 ̸∈ I, since for

any x+ iy
√
d, z + iw

√
d ∈ ZK ,

1 = (x+ iy
√
d)a+ (z + iw

√
d)i

√
d ⇔ 1 = (ax− wd) + (ay + z)i

√
d

⇔

{
ax− wd = 1

ay + z = 0.

But ax− wd = a(x− wb) ̸= 1 since a > 1, so this is impossible.
We now show that I is not principal. Assume by contradiction that I = (x +
iy
√
d)ZK . Then |N(x+iy

√
d)| = |I|, which must divide |N(a)| = a2 and |N(i

√
d)| =

d. Since d is squarefree, gcd(a, b) = 1, and gcd(a2, d) = a. Thus |N(x + iy
√
d)|

divides a < d. By part 2, this implies that y = 0; otherwise |N(x + iy
√
d)| ≥ d.

Thus I = xZK with x ∈ Z. Since i
√
d ∈ I, this implies that x = 1 and I = ZK , a

contradiction.

5. The goal of this exercise is to prove that the Fermat equation x3 + y3 = z3 has no
integral solution with xyz ̸= 0, which was first proved by Euler. This is a fairly long
exercise – the more interesting part start at Question 3, and the first two questions
may be assumed without proof.



We denote ω = e2iπ/3 = (−1+ i
√
3)/2 and K = Q(

√
−3) = Q(ω). We have ZK = Z[ω].

We consider the equation
x3 + y3 = uz3 (1)

where u ∈ Z×
K is a parameter and the unknowns (x, y, z) are in ZK .

1. Show that ZK is a euclidean domain and that Z×
K = {−1, 1, ω, ω2,−ω,−ω2}.

Solution: Note that for a, b ∈ Z, N(a+ bω) = (a+ bω)(a+ bω̄) = a2 − ab+ b2.
We now show that ZK is euclidean; this argument is very similar to problem 2.2.
For a+ bω, c+ dω ∈ ZK , let e, f ∈ Q such that

a+ bω

c+ dω
= e+ fω.

Let q, s ∈ Z such that |e − q| ≤ 1
2 and |f − s| ≤ 1

2 , and consider the elements
κ = q+ sω ∈ ZK and ϱ = a+ bω−κ(c+ dω) ∈ ZK . The elements κ and ϱ satisfy
the constraints on q and r respectively if we can show that |N(ϱ)| < |N(c+ dω)|.
But

|N(ϱ)| = |N(c+ dω)||N(a+bω
c+dω − κ)|

= |N(c+ dω)||N((e− q) + (f − s)ω)|
= |N(c+ dω)||(e− q)2 − (e− q)(f − s) + (f − s)2|

≤ 3

4
|N(c+ dω)| < |N(c+ dω)|.

By problem 1.4, a + bω ∈ ZK is a unit if and only if N(a + bω) = ±1, which
happens if and only if a2 − ab+ b2 = ±1. If a2 − ab+ b2 = 1, then

a =
b±

√
b2 − 4(b2 − 1)

2
=

b±
√
4− 3b2

2
.

This has (real) integer solutions only if b = 0 or b = ±1. If b = 0, then a = ±1,
corresponding to the units ±1; if b = 1, then a = 0 or a = 1, corresponding to
the units ω and 1 + ω = −ω2 respectively; and if b = −1, then a = −1 or a = 0,
corresponding to the units −1− ω = ω2 and −ω respectively.

2. Let λ = 1−ω. Show that λZK is a prime ideal with norm 3. In particular, the field
ZK/λZK is isomorphic to Z/3Z. We denote by v the λ-adic valuation on (non-zero)
ideals.
Solution: First note that ω ≡ 1 mod λ, and thus

3 ≡ 1 + 2ω ≡ 1 + ω + ω2 = 0 mod λ.

Then for any a, b ∈ Z,
a+ bω ≡ a+ b mod λ,

and thus by combining both of these we get that a+ bω modulo λ is given by the
value of a + b modulo 3. Thus ZK/λZK is either trivial or isomorphic to Z/3Z.
Since N(λ) = N(1 − ω) = 1 + 1 + 1 = 3, ZK/λZK is isomorphic to Z/3Z. Since
this is a domain, λZK must be prime.



3. Show that if x ∈ ZK satisfies x ≡ 1 mod λ, then x3 ≡ 1 mod λ4. (Hint: write
x3 − 1 = (x− 1)(x− ω)(x− ω2) and use the fact that ω2 ≡ 1 mod λ.)
Solution: Since x ≡ 1 mod λ, we also have x ≡ ω and x ≡ ω2 mod λ, so λ divides
each of (x− 1), (x− ω), and (x− ω2).
Now note that x−1

λ + 1 = x−1+λ
λ = x−ω

λ , and similarly x−ω
λ + 1 = x−ω2

λ . Thus the
three values x−1

λ , x−ω
λ , and x−ω2

λ ∈ ZK must represent the three different elements
of ZK/λZK , so one of these three values is divisible by λ. Equivalently, one of x−1,
x−ω, and x−ω2 is divisible by λ2, so there are at least four factors of λ dividing
(x− 1)(x− ω)(x− ω2) = x3 − 1. Thus x3 ≡ 1 mod λ4.

4. Show that (1) has no solution with λ not dividing xyz. (Hint: reduce modulo λ
and check cases.)
Solution: Note that the same argument in the previous part with the polynomial
x3 + 1 = (x + 1)(x + ω)(x + ω2) shows that if x ≡ −1 mod λ, then x3 ≡ −1
mod λ4.

Assume by contradiction that x, y, z satisfy (1) and λ does not divide xyz. Then
x, y, z are all nonzero mod λ. By multiplying x, y, and z by −1 if necessary, we
can assume that x ≡ 1 mod λ.
Assume first that y ≡ −1 mod λ. Then

uz3 ≡ x3 + y3 ≡ 1− 1 ≡ 0 mod λ4,

so by multiplying both sides by u−1 we get z3 ≡ 0 mod λ4, and thus λ|z, so λ|xyz,
a contradiction.
Now assume that y ≡ 1 mod λ. Then x3 + y3 ≡ 2 mod λ4. We also know that
z ≡ ±1 mod λ, and thus z3 ≡ ±1 mod λ4, so 2 ≡ ±u mod λ4 or equivalently
λ4|(2 ± u). But this is impossible; for example note that N(λ4) = N(λ)4 = 81,
whereas N(2± u) ∈ {1, 3, 7, 9} for the units in ZK .

5. Let (x, y, z) be a solution of (1) for a given u ∈ Z×
K with v(xy) = 0. Show

that v(z) ≥ 2. (Hint: use the previous question and reduce modulo λ2.)
Solution: From the previous question, we can assume that x ≡ 1 mod λ, and the
case when y ≡ 1 mod λ is impossible, so y ≡ −1 mod λ. Then as before this
implies that z3 ≡ 0 mod λ4. Thus 3v(z) ≥ 4, so v(z) ≥ 2.

6. We fix from now on a solution (x, y, z) of (1) for a given u ∈ Z×
K with v(xy) = 0

and x coprime to y. Show that one of x + y, x + ωy or x + ω2y has λ-valuation
≥ 2, and that one may assume that x+ y has this property, which we consider to
be the case from now on.
Solution: As before, we know that

x3 + y3 ≡ 0 mod λ4

⇒ (x+ y)(x+ ωy)(x+ ω2y) ≡ 0 mod λ4

⇒ v(x+ y) + v(x+ ωy) + v(x+ ω2y) ≥ 4.

Thus at least one of the three must be ≥ 2.



Note that we can always replace y by ωy or ω2y, and the triple (x, y, z) is a solution
of (1) if and only if (x, ωy, z) and (x, ω2y, z) are, because y3 = (ωy)3 = (ω2y)3.
This substitution permutes transitively the values x+ y, x+ ωy, and x+ ω2y, so
we can always fix (x, y, z) satisfying this question and such that v(x+ y) ≥ 2.

7. Show then that v(x+ ωy) = v(x+ ω2y) = 1 and that v(x+ y) = 3v(z)− 2.
Solution: Since

x+ ωy = x+ y + λy,

we can reduce modulo λ2 to get

x+ ωy ≡ λy mod λ2.

Since y ≡ ±1 ̸≡ 0 mod λ, λy ̸≡ 0 mod λ2. Thus λ|(x + ωy) but λ2 ∤ (x + ωy),
so v(x + ωy) = 1. By the same argument with −λy in place of +λy we get that
v(x+ ω2y) = 2.
Since (x, y, z) are a solution to (1), we have

x3 + y3 = uz3

⇒ (x+ y)(x+ ωy)(x+ ω2y) = uz3

⇒ v(x+ y) + v(x+ ωy) + v(x+ ω2y) = v(u) + 3v(z).

Since λ is prime and u is a unit, v(u) = 0. Then

⇒ v(x+ y) + 2 = 3v(z)

⇒ v(x+ y) = 3v(z)− 2,

as desired.

8. Show that gcd(x+ y, x+ωy) = gcd(x+ y, x+ω2y) = gcd(x+ωy, x+ω2y) = λZK

(where the gcds are in the sense of ideals).
Solution: Let π be any irreducible with (π) ̸= (λ). Assume by contradiction that
π|(x+y) and π|(x+ωy). Then π|(1−ω)y = λy, and similarly π|(x+ωy−ω(x+y)) =
(1 − ω)x = λx, so since (π) ̸= (λ) we have π|y and π|x. But x is coprime to y, a
contradiction.
Since v(x + y), v(x + ωy), and v(x + ω2y) are all ≥ 1, all of these gcds must be
contained in λZK but not in λ2ZK ; thus they are all λZK .

9. Deduce that there exist units (ξ, η, ϑ) and elements (a, b, c) of ZK , each coprime
to λ, such that

ξa3λv(x+y) + ωηb3λ+ ω2ϑc3λ = 0.

(Hint: use unique factorization in ZK and combine the resulting expressions for
x+ y, x+ ωy, x+ ω2y.)
Solution: Since the three factors of x3 + y3(= uz3) share no prime factors apart
from λ, but the product is a cube, each prime appearing in the prime factorization
of each of (x+y), (x+ωy), and (x+ω2y) must appear to a cubic power. By unique



factorization, there must therefore exist units ξ, η, and ϑ and elements a, b, c ∈ ZK

coprime to λ such that

x+ y = ξa3λv(x+y),

x+ ωy = ηb3λ,

x+ ω2y = ϑc3λ.

Thus

ξa3λv(x+y) + ωηb3λ+ ω2ϑc3λ = (x+ y) + ω(x+ ωy) + ω2(x+ ω2y)

= (1 + ω + ω2)x+ (1 + ω2 + ω)y

= 0,

as desired.

10. Deduce that there exist units ϵ and ϵ′ and elements r, s and t ∈ ZK such that

r3 + ϵs3 = ϵ′t3

and v(t) = v(z)− 1.
Solution: We can divide the previous equation by λ and do some algebraic mani-
pulations, recalling that v(x+ y) = 3v(z)− 2, to get

ξa3λv(x+y)−1 + ωηb3 + ω2ϑc3 = 0

⇒ ωηb3 + ω2ϑc3 = −ξa3λ3(v(z)−1)

⇒ b3 + ωη−1ϑc3 = −ω2η−1ξ(aλv(z)−1)3.

Choosing r = b, s = c, t = aλv(z)−1, and ϵ = ωη−1ϑ and ϵ′ = −ω2η−1ξ, satisfies
the constraint. Note that a and λ are relatively prime, so that v(t) = v(λv(z)−1) =
v(z)− 1.

11. Show that ϵ ∈ {−1, 1} and deduce that there is a solution (x′, y′, z′) of (1), possibly
for a different unit than u, with v(z′) = v(z)− 1.
Solution: Since r = a and s = c are relatively prime to λ, we must have r = ±1
mod λ and thus r3 = ±1 mod λ4, and the same for s. Also, v(z) ≥ 2, so v(t) ≥ 1
and v(t3) > 2. Thus

r3 + ϵs3 ≡ 0 mod λ2

⇒ ±1± ϵ ≡ 0 mod λ2,

so that λ2|(ϵ ± 1). By looking at the set of units individually and, for example,
comparing norms, one can see that this is only possible when ϵ ± 1 = 0, or when
ϵ = ±1.
If ϵ = ±1 then ϵ = ϵ3, so by choosing x′ = r, y′ = ϵs, and z′ = t, we get a different
solution of (1), possibly for a different unit than u, with v(z′) = v(z)− 1.



12. Conclude that (1), and the Fermat equation with exponent 3, have no solutions
with xyz ̸= 0. (This method of proof is known as infinite descent, and has its origin
in the proof by Fermat himself that the equation for exponent 4 has no solution,
which is easier as it does not require any algebraic number theory.)
Solution: Note that shared factors of x and y must also be shared by z and thus can
be divided out, so it suffices to consider solutions with x and y relatively prime.
We can also assume without loss of generality that v(xy) = 0; if say λ|x, then
x3 = (−y)3 + uz3, and by the same argument in part 11 we have u = ±1, so we
have a new solution (−y,±z, x) where λ does not divide either of the first two
coordinates.
We showed in part 5 that v(z) ≥ 2 for any such solution, so there exists a minimum
attained value of v(z) among these solutions. But we have also shown that a
solution (x′, y′, z′) exists with v(z′) < v(z), a contradiction.
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