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Exercise Sheet 5

1. The goal of this exercise is to compute the “probability” that two integers m and n,
both ≤ x, are coprime.

1. Let x ≥ 1 be a real number. Show that

|{(m,n) | 1 ≤ m,n ≤ x (m,n) = 1}| =
∑
d≤x

µ(d)
∑

m,n≤x
d|(m,n)

1,

where (m,n) denotes the gcd of m and n.
Solution: By the Möbius inversion formula,

|{(m,n) | 1 ≤ m,n ≤ x (m,n) = 1}| :=
∑

m,n≤x
(m,n)=1

1

=
∑

m,n≤x

∑
d|(m,n)

µ(d).

Swapping sums gives the answer.
2. Deduce that

|{(m,n) | 1 ≤ m,n ≤ x (m,n) = 1}| = 6

π2
x2 +O(x log x)

for x ≥ 2.
Solution: Starting from the previous problem, we have∑

d≤x

µ(d)
∑

m,n≤x
d|(m,n)

1 =
∑
d≤x

µ(d)
(∑

n≤x
d|n

1
)2

=
∑
d≤x

µ(d)
⌊x
d

⌋2
=
∑
d≤x

µ(d)

(
x2

d2
+O

(x
d

))

= x2
∑
d≤x

µ(d)

d2
+O

x
∑
d≤x

1

d

 .

By the discussion surrounding equation (3.10) in the notes, the first sum is x2

ζ(2) +

O(x3/2), say, whereas by for example bounding the sum by an integral, one can see
that the second term is O(x log x). This, along with ζ(2) = π2/6, gives the desired
estimate.



2. Let f ≥ 0 be an arithmetic function.

1. Suppose that for every integer k ≥ 1, the Dirichlet series∑
n≥1

f(n)k

ns

for fk converges for Re(s) > 1. Prove then that for any ϵ > 0, we have f(n) ≪ nϵ

for n ≥ 1.
Solution: Note that in order for the Dirichlet series

∑
n≥1

f(n)k

ns to converge, we

must have f(n)k

ns → 0 as n → ∞. Fix any ϵ > 0 and let k be large enough that
2/k < ϵ. The Dirichlet series

∑
n≥1

f(n)k

n2 converges, so

lim
n→∞

f(n)k

n2
= 0.

This implies that for large enough n,

f(n)k

n2
=

(
f(n)

n2/k

)k

≤ 1,

and thus for large enough n, f(n)/n2/k ≤ 1. Thus f(n) ≪ n2/k ≪ nϵ.
2. Deduce that, for all ϵ > 0, the divisor function d satisfies d(n) ≪ nϵ for all n ≥ 1.

Solution:
We present here multiple solutions. First, the following argument makes use of
Proposition 3.6.2 (2):
For the multiplicative function f(n) = d(n)k, we have that f(p) = 2k for all primes
p, and for v ≥ 2 we have f(pv) = (v+1)k = O(vk). Thus we can apply Proposition
3.6.2, (2), where the real number A ≥ 0 is given by k, δ > 0 can be anything (say
δ = 2), and the “k” in the proposition is our 2k, to get that∑

n≥1

f(n)

ns
= ζ(s)2

k
D♯

f (s),

where D♯
f (s) is holomorphic for Re(s) > 1−δ. Since ζ(s)2k and D♯

f (s) both converge

for Re(s) > 1, so does
∑

n≥1
f(n)
ns .

Thus by problem (2.1), for all ϵ > 0, d(n) ≪ nϵ for all n ≥ 1.
Second, the following solution makes use of an inductive bound in terms of ζ(s):
First note that for any k, for any prime power pv,

d(pv)k ∗ d(pv)k =
∑

0≤j≤v

d(pj)kd(pv−j)k

=
∑

0≤j≤v

(j + 1)k(v − j + 1)k

≥
∑

0≤j≤v

(v + 1)k

= (v + 1)k+1 = d(pv)k+1.



Thus by induction, d(pv)k+1 ≤ d(pv)∗2
k , where f(n)∗k denotes the convolution of

k copies of f(n). By multiplicativity the same holds for all n, so that
∞∑
n=1

d(n)k

ns
≤

∞∑
n=1

d(n)(∗2
k−1)

ns
= ζ(s)2

k
.

Since ζ(s)2
k converges absolutely for Re(s) > 1, so does

∑∞
n=1

d(n)k

ns .

In the remainder of this exercise, we give a different proof of the last statement (which
can be adapted to other functions).

3. Let ϵ > 0 be given. Prove that there exists a real number P , depending only on ϵ,
such that

d(pv) ≤ pvϵ

for all p ≥ P and all integers v ≥ 1.
Solution: Fix ϵ > 0. For all v ≥ 1, we have d(pv) = |{pa | 0 ≤ a ≤ v}| = v + 1.
Let P be large enough that pϵ ≥ 2 whenever p ≥ P . By single-variable calculus,
1 + x ≤ 2x for all x ≥ 1. Thus for all v ≥ 1,

v + 1 ≤ 2v ≤ (pϵ)v = pvϵ.

4. Deduce that for all ϵ > 0, the divisor function d satisfies d(n) ≪ nϵ for all n ≥ 1.
Solution: Fix ϵ > 0. By the previous part and multiplicativity, d(n) ≪ nϵ for all n
divisible only by primes p ≥ P .
Let p < P be a prime. Note that as v → ∞, d(pv) = v+1 = o(pvϵ), so there exists
some constant Vp ≥ 1 such that v + 1 ≤ pvϵ for all v ≥ Vp. Define

Mp = max
1≤v≤Vp

v + 1

pvϵ
,

so that v + 1 ≤ Mpp
vϵ for all v ≥ 1. Define further

M = max
p≤P

Mp.

Since P depends only on ϵ and Vp, Mp depend only on P , M is finite and depends
only on ϵ. By construction, for all p and all v,

d(pv) ≤ Mpvϵ.

Thus

d(n) =
∏
p|n

d(pvp(n)) =
∏
p<P

d(pvp(n))
∏
p≥P

d(pvp(n))

≤
∏
p<P

Mpvp(n)ϵ
∏
p≥P

pvp(n)ϵ

≤ MPnϵ.

Thus d(n) ≪ nϵ.



3. Let K be a number field. Let rK(n) be the arithmetic function defined by

rK(n) = |{n ⊂ ZK | |n| = n}|

for all integers n ≥ 1 (number of integral ideals of norm n).

1. Show that rK(n) is well-defined.
Solution: We need to show that for all integers n ≥ 1, the number of integral ideals
of norm n is finite. Since every ideal factors as a product of prime ideals, it suffices
to show that for n = pk, there are finitely many prime ideals of norm n.
Fix an integral prime p; we will show that there are finitely many prime ideals
I ⊂ ZK such that I ∩ Z = pZ, which suffices since the intersection of any prime
ideal in ZK with Z must remain prime. By Lemma 2.7.1 (1), these ideals are
precisely those prime ideals appearing in the factorization

pZK = pe1
1 · · ·peg

g ,

and each pi has norm a power of p by Lemma 2.7.1 (2). By Lemma 2.7.1 (3),
g ≤ [K : Q], so g must be finite. This is exactly what we wanted to show.

2. Show that rK is a multiplicative function.
Solution: Recall that ideals in ZK factor uniquely into prime ideals, and that all
prime ideals in ZK have norm that is a prime power. Let m,n ≥ 1 be coprime
integers. Then any ideal I of norm mn must factor uniquely as Im · In, where Im
has norm m and In has norm n. Thus

rK(mn) = |{I ⊂ ZK | |I| = mn}|
= |{m,n ⊂ ZK | |m| = m, |n| = n}|
= |{m ⊂ ZK | |m| = m}| · |{n ⊂ ZK | |n| = n}|
= rK(m)rK(n),

so rK is multiplicative.

3. Let k = [K : Q]. Show that for p prime and v ≥ 1, we have

rK(pv) ≤ |{(a1, . . . , ak) | ai ≥ 0 and
∑
i

ai = v}| ≤ (v + 1)k.

Solution: Write pZK = pe1
1 · · ·peg

g , where as before g ≤ k. The prime ideals
p1, . . . ,pg are precisely the set of prime ideals in ZK whose norm is a power
of p. Write |pi| = pfi for all i and for fi ≥ 1. By unique factorization of prime
ideals, any ideal I with |I| = pv can be written uniquely as I = pa1

1 · · ·pag
g , where

ai ≥ 0 and, by taking norms on both sides,

v = a1f1 + · · ·+ agfg.



Thus

rK(pv) = |{I ⊂ ZK | |I| = pv}|
= |{pa1

1 · · ·pag
g ⊂ ZK | v = a1f1 + · · ·+ agfg}|

= |{(a1f1, . . . , agfg) | aifi ≥ 0 and
∑
i

aifi = v}|

≤ |{(a1, . . . , ag) | ai ≥ 0 and
∑
i

ai = v}|,

where in the last step we have extended the set by allowing for all g-tuples
(a1, . . . , ag) of nonnegative integers whose sum is v, instead of merely those where
each bi = aifi is a multiple of fi. We obtain the desired result by noting that g ≤ k,
so we can extend the set further by considering k-tuples (a1, . . . , ak) rather than
g-tuples.
For any (a1, . . . , ak) with ai ≥ 0 and

∑
i ai = v, we must have 0 ≤ ai ≤ v + 1 for

all i, so there are at most v + 1 choices for each ai and thus ≤ (v + 1)k elements
total in this set.

4. Deduce that for all ϵ > 0, we have the bound rK(n) ≪ nϵ for all n ≥ 1. (Hint: use
the previous exercise.)
Solution: For a prime power pv, we have d(pv) = v + 1, since the factorizations of
pv are precisely papb where 0 ≤ a, b ≤ v and a + b = v, of which there are v + 1.
Thus rK(pv) ≤ d(pv)k, and by multiplicativity for all n, rK(n) ≤ d(n)k.
By the previous question, for all ε > 0, d(n) ≪ nϵ/k, and thus rK(n) ≪ nϵ.

4. Let f be an arithmetic function, and suppose that for every prime number p, there
exist complex numbers αp and βp such that αpβp = 1 and∑

n≥1

f(n)n−s =
∏
p

(1− αpp
−s)−1(1− βpp

−s)−1

for Re(s) large enough.

1. Show that for all primes p and all integers v ≥ 0, we have

f(pv) =
v∑

j=0

αj
pβ

v−j
p .

Solution: By geometric series expansion, for large enough Re(s),
∞∑
n=1

f(n)

ns
=
∏
p

(1− αpp
−s)−1(1− βpp

−s)−1

=
∏
p

(
1 +

αp

ps
+

α2
p

p2s
+ · · ·

)(
1 +

βp
ps

+
β2
p

p2s
+ · · ·

)

=
∏
p

∞∑
v=0

1

pvs

v∑
j=0

αj
pβ

v−j
p ,



where the inner sum is the coefficient of 1
pvs when the αp component and the

βp component are multiplied. Let g(n) be the multiplicative function defined on
prime powers pv by g(pv) =

∑v
j=0 α

j
pβ

v−j
p . Then by the above, F (s) =

∑∞
n=1

f(n)
ns =∑∞

n=1
g(n)
ns for all s with large enough Re(s).

By Lemma 3.5.2, therefore, f = g, as desired.
2. Assume that, for all ϵ > 0, we have f(n) ≪ nϵ for n ≥ 1. Let p be a prime number.

Show that the power series ∑
v≥0

f(pv)Xv

has radius of convergence ≥ 1, and deduce that |αp| = |βp| = 1.
Solution: Assume that for all ϵ > 0, f(n) ≪ nϵ for all n ≥ 1. Let p be a prime
number and fix X ∈ C with |X| < 1. Let ϵ > 0 be small enough that pϵ|X| < 1.
Then ∑

v≥0

|f(pv)Xv| ≪
∑
v≥0

pvϵ|X|v

=
∑
v≥0

(pϵ|X|)v,

which is a power series with ratio less than 1 and therefore converges. Thus∑
v≥0 f(p

v)Xv has radius of convergence ≥ 1.
Assume by contradiction that |αp| ≠ 1. Since αp =

1
βp

we can assume without loss
of generality that |αp| < 1 and |βp| > 1. Then choosing X = αp we have

f(pv)Xv = αv
p

v∑
j=0

αj
pβ

v−j
p

=

v∑
j=0

αj
pβ

−j
p , since αpβp = αv

pβ
v
p = 1

=

v∑
j=0

β−2j
p

=
1− β−2v−2

p

1− β−2
p

.

Since |βp| > 1, this approaches 1 (and not 0) as v → ∞. But then
∑

v≥0 f(p
v)Xv

cannot converge, which contradicts the radius of convergence being ≥ 1. Thus
|αp| = |βp| = 1.

3. Conclude that, under the assumption of the previous question, we have |f(n)| ≤
d(n) for all n ≥ 1.
Solution: Assume that f(n) ≪ nϵ for n ≥ 1. Then |αp| = |βp| = 1 by the previous
question, so that for any prime power pv,

|f(pv)| =

∣∣∣∣∣∣
v∑

j=0

αj
pβ

v−j
p

∣∣∣∣∣∣ ≤
v∑

j=0

|αp|j |βp|v−j = v + 1 = d(pv),



so by multiplicativity |f(n)| ≤ d(n) for all n ≥ 1.

5. We recall that φ(n) = |(Z)/nZ)×| for all n ≥ 1.

1. Prove that
φ(n) = n

∑
d|n

µ(d)

d

for all n ≥ 1.
Solution: For d|n, φ(d) is the number of integers 1 ≤ k ≤ d with (k, d) = 1. The
{1 ≤ k ≤ d | (k, d) = 1} is in bijection with the set {1 ≤ ℓ ≤ n | (ℓ, n) = n/d},
via the transformation ℓ = n

d · k. Thus

n = |{1 ≤ ℓ ≤ n}| =
∑
d|n

|{1 ≤ ℓ ≤ n | (ℓ, n) = n/d}| =
∑
d|n

φ(d).

Then by Möbius inversion, φ(n) =
∑

d|n µ(d)
n
d .

2. Prove that ∑
n≤x

φ(n) =
3

π2
x2 +O(x log x)

for x ≥ 1.
Solution: By the previous part,∑

n≤x

φ(n) =
∑
n≤x

∑
d|n

µ(d)
n

d

=
∑
d≤x

µ(d)
∑
n≤x
d|n

n

d

=
∑
d≤x

µ(d)
∑

k≤x/d

k, where n = dk

=
∑
d≤x

µ(d)
⌊x/d⌋(⌊x/d⌋+ 1)

2

=
∑
d≤x

µ(d)

(
x2

2d2
+O(x/d)

)
, since ⌊y⌋ = y +O(1)

=
x2

2

(
1

ζ(2)
+O(x−1)

)
+O

x
∑
d≤x

1/d

 ,

where the first term is evaluated once again using the discussion after equation
(3.10) and the second term is O(x log x). Simplifying, and substituting ζ(2) = π2/6,
gives the result.



3. Prove that
φ(n) = n

∏
p|n

(
1− 1

p

)
,

and deduce that n/φ(n) = O(log n) for n ≥ 2. (Hint: bound it above by ζ(2)
∑

d≤n
1
d .)

Solution: Since φ(n)
n =

∑
d|n

µ(d)
d , where µ(d)

d is multiplicative, φ(n)
n must also be

multiplicative. Thus it suffices to prove that for a prime power pv, φ(pv)
pv = 1 − 1

p .
For this we also use problem (5.1):

φ(pv)

pv
=
∑
d|pv

µ(d)

d
=

v∑
a=0

µ(pa)

pa
= 1− 1

p
,

since µ(pa) = 0 for a ≥ 2.
We then have∏

p|n

(
1− 1

p

)−1

=
∏
p|n

(
1− 1

p

)−1(
1 +

1

p

)−1(
1 +

1

p

)

=
∏
p|n

(
1− 1

p2

)−1∏
p|n

(
1 +

1

p

)

≤ ζ(2)
∑
d|n

µ(d)2

d

≤ ζ(2)
∑
d≤n

1

d

≪ log n,

as desired.

4. Deduce from problem (5.3) that the function e(n) = |{m ≥ 1 | φ(m) = n}| is a
well-defined arithmetic function. Show that φ(n) is even for all n ≥ 3, and deduce
that the function e is not multiplicative.
Solution: By problem (5.3), if n = φ(m), then m

n = O(logm), and thus n =
Ω(m/ logm). Thus log n = Ω(logm− log logm) = Ω(logm), so m

n = O(log n) and
m = O(n log n).
This implies that for each n, there are at most O(n log n) values m for which n =
φ(m), and thus in particular finitely many. Thus e(n) is a well-defined arithmetic
function.
Assume first that n ≥ 3 is odd. Then φ(n) = n

∏
p|n

(p−1)
p . Since n is divisible by

some odd prime p ≥ 3, φ(n) is divisible by p− 1, and thus even. Now assume that
n ≥ 3 is even. Then

φ(n) = n
∏
p|n

p− 1

p
=

n

2

∏
p|n
p≥3

p− 1

p
.



Since n is even, n
2 is an integer. If n is divisible by an odd prime p ≥ 3, then

(p− 1)|φ(n), so φ(n) is even. If not, then n = 2k for some k ≥ 2, and φ(n) = n
2 is

even.
Thus for all n ≥ 3, φ(n) is even (and note that φ(1) = φ(2) = 1). This implies that,
for example, e(3) = 0, but e(6) ≥ 1 since φ(7) = 6, so e cannot be multiplicative.

5. Prove that the Dirichlet series

F (s) =
∑
n≥1

e(n)

ns
=
∑
m≥1

1

φ(m)s

converges absolutely for Re(s) > 1 and that we have in this region an equality

F (s) = ζ(s)R(s)

where R is a function defined by an infinite product over primes which is holomor-
phic in the half-plane defined by Re(s) > 0. Does the existence of this factorization
contradict the fact that e is not multiplicative?
Solution: For Re(s) > 1,

∑
m≥1

∣∣∣∣ 1

φ(m)s

∣∣∣∣≪ ∑
m≥1

(log n)Re(s)

nRe(s)
,

which converges. Thus F (s) converges absolutely for Re(s) > 1. In this region,

F (s) =
∑
m≥1

1

φ(m)s
=
∑
m≥1

1

ns
∏

p|n(1− 1/p)s

=
∏
p

(
1 +

(
1− 1

p

)−s( 1

ps
+

1

p2s
+ · · ·

))

=
∏
p

(
1 +

(
1− 1

p

)−s 1

ps

(
1− 1

ps

)−1
)

= ζ(s)
∏
p

(
1− 1

ps
+

1

ps

(
1− 1

p

)−s
)
.

Define R(s) =
∏

p

(
1− 1

ps + 1
ps

(
1− 1

p

)−s
)
. For Re(s) > 0, we have

(
1− 1

p

)−s
=

1 +O(s/p), so that
R(s) =

∏
p

(
1 +O(sp−1−s)

)
,

which converges absolutely.
Note that the pth factor is a function of s, but is not a convergent series of the
form

∑
v≥0

f(pv)
pvs , so we get no contradiction.



6. Deduce that F has analytic continuation to the region Re(s) > 0 with a unique
simple pole at s = 1 with residue

r =
π2

6

∏
p

(
1 +

1

p3

)
.

Solution: From the previous problem, we can analytically continue F (s) to the
region Re(s) > 0 by definining F (s) = ζ(s)R(s) whenever Re(s) > 0. Then F (s)
has poles only when ζ(s) has poles (since R(s) is holomorphic in this region), and
thus F (s) has a unique simple pole at s = 1. At s = 1, the residue of F (s) is

Ress=1(F (s)) = lim
s→1

(s− 1)ζ(s)R(s)

= R(1)

=
∏
p

(
1− 1

p
+

1

p

(
1− 1

p

)−1
)

=
∏
p

(
1− 1

p
+

1

p− 1

)

=
∏
p

p2 − p+ 1

p(p− 1)

=
∏
p

(
1− 1

p2

)−1(p3 + 1

p3

)
= ζ(2)

∏
p

(
1 +

1

p3

)
,

which gives the desired expression under the substitution ζ(2) = π2

6 .
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