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Exercise Sheet 5

1. The goal of this exercise is to compute the “probability” that two integers m and n,
both < z, are coprime.

1. Let x > 1 be a real number. Show that

{omn) [ 1<mn <o (mon) =1} =Y ud) 3 1

d<z m,n<x

d|(mn)
where (m, n) denotes the ged of m and n.
Solution: By the Mobius inversion formula,
H{(m,n) | 1<m,n<z (m,n)=1}:= Z 1
m,n<x
(m n)=1

=2, >

m,n<z d|(m,n)

Swapping sums gives the answer.
2. Deduce that

{(m,n) | 1<m,n<z (mn)=1} = %$2+O($10g$)
T

for z > 2.
Solution: Starting from the previous problem, we have

Su) Y 1= u@ (1)

d<z m,n<x d<z n<z
- d|(m,n) djn
2
= > uia) | 3]
d<z
2
=Sua (70 (7))
— 2 w(d) 20| 1
d<zx d2 gpd

By the discussion surrounding equation (3.10) in the notes, the first sum is % +
O(mg/ 2), say, whereas by for example bounding the sum by an integral, one can see
that the second term is O(xlogx). This, along with ¢(2) = 72/6, gives the desired
estimate.



2. Let f > 0 be an arithmetic function.

1. Suppose that for every integer & > 1, the Dirichlet series

Z f(n)*
nS
n>1
for f* converges for Re(s) > 1. Prove then that for any € > 0, we have f(n) < n¢
for n > 1.
Solution: Note that in order for the Dirichlet series >, -, L)

ns
must have f(nLS)k — 0 as n — oo. Fix any ¢ > 0 and let k£ be large enough that

k

to converge, we

2/k < e. The Dirichlet series ), f(nQ)k converges, o

n

lim f(n)k

n—o0 n2

=0.

This implies that for large enough n,

ft _ (f(n)>'“ -

n2 n2/k

and thus for large enough n, f(n)/n** < 1. Thus f(n) < n** < n.

2. Deduce that, for all € > 0, the divisor function d satisfies d(n) < n¢ for all n > 1.
Solution:
We present here multiple solutions. First, the following argument makes use of
Proposition 3.6.2 (2):
For the multiplicative function f(n) = d(n)*, we have that f(p) = 2" for all primes
p, and for v > 2 we have f(p¥) = (v+1)¥ = O(v¥). Thus we can apply Proposition
3.6.2, (2), where the real number A > 0 is given by k, 6 > 0 can be anything (say
§ = 2), and the “k” in the proposition is our 2%, to get that

S 70— o D),

n>1

where D?c(s) is holomorphic for Re(s) > 1—4. Since ((s)?" and Dgc(s) both converge
for Re(s) > 1, so does }, -, fy(;;).
Thus by problem (2.1), for all € > 0, d(n) < n for all n > 1.

Second, the following solution makes use of an inductive bound in terms of ((s):

First note that for any k, for any prime power p*,

d(p*)* =d(p*)* = Y dp?)rdp')"

0<j<w

=) G+ w-j+1)F

0<j<v

> > (w+1)f

0<j<v
_ (v + l)k-i-l —_ d(pv)k—H.



Thus by induction, d(p®)*™! < d(p®)*2", where f(n)** denotes the convolution of
k copies of f(n). By multiplicativity the same holds for all n, so that

O d(n)k > d(n)*2) &
sl AT
n=1 n=1

ns n

d(n)*

ns

Since ((s)2" converges absolutely for Re(s) > 1, so does Yoy

In the remainder of this exercise, we give a different proof of the last statement (which
can be adapted to other functions).

3. Let € > 0 be given. Prove that there exists a real number P, depending only on e,
such that

d(p'U) S pv€
for all p > P and all integers v > 1.
Solution: Fix € > 0. For all v > 1, we have d(p”) = {p* | 0 <a <v}| =v+ 1

Let P be large enough that p¢ > 2 whenever p > P. By single-variable calculus,
1+ x < 2% for all x > 1. Thus for all v > 1,

U—‘l‘l S 2’0 S (pe)v :pUE'

4. Deduce that for all € > 0, the divisor function d satisfies d(n) < n¢ for all n > 1.
Solution: Fix € > 0. By the previous part and multiplicativity, d(n) < n° for all n
divisible only by primes p > P.

Let p < P be a prime. Note that as v — oo, d(p”) = v+ 1 = o(p"®), so there exists
some constant V, > 1 such that v +1 < p¥ for all v > V},. Define

v+1
M, = max ——,
1<o<V, pUe

so that v + 1 < Mpp"c for all v > 1. Define further

M = max M),
p<P

Since P depends only on € and V),, M,, depend only on P, M is finite and depends
only on €. By construction, for all p and all v,

d(p”) < Mp*“.

Thus
d(n) = [Tdep™) = [T ™) TT dp*)
pln p<P p>P
< H Mpve(n)e H pUr(n)e
p<P p=>P
< MPne.

Thus d(n) < n°.



3. Let K be a number field. Let rx(n) be the arithmetic function defined by
ri(n) = {n C Zg | |n| = n}|

for all integers n > 1 (number of integral ideals of norm n).

1. Show that rx(n) is well-defined.

Solution: We need to show that for all integers n > 1, the number of integral ideals
of norm n is finite. Since every ideal factors as a product of prime ideals, it suffices
to show that for n = p*, there are finitely many prime ideals of norm n.

Fix an integral prime p; we will show that there are finitely many prime ideals
I C Zk such that I NZ = pZ, which suffices since the intersection of any prime
ideal in Zg with Z must remain prime. By Lemma 2.7.1 (1), these ideals are
precisely those prime ideals appearing in the factorization

PZk =Pi - Py’
and each p; has norm a power of p by Lemma 2.7.1 (2). By Lemma 2.7.1 (3),

g < [K :Q], so g must be finite. This is exactly what we wanted to show.

2. Show that rx is a multiplicative function.

Solution: Recall that ideals in Zg factor uniquely into prime ideals, and that all
prime ideals in Zg have norm that is a prime power. Let m,n > 1 be coprime
integers. Then any ideal I of norm mn must factor uniquely as I,,, - I,,, where I,
has norm m and I,, has norm n. Thus

rr(mn) = {I C Zk | |I| = mn}|
=[{m,n C Zk | |m|=m,[n|=n}|
=|{m CZk | |m|=m}[-{n CZk | [n| =n}|

= rr(m)ri(n),

so ri is multiplicative.
3. Let k = [K : Q)]. Show that for p prime and v > 1, we have

rr(p') < {(a1,...,ax) | a; >0 and Zai:v}] < (w+1k

)

Solution: Write pZy = p{'---py’, where as before ¢ < k. The prime ideals
P1,...,Pg are precisely the set of prime ideals in Zx whose norm is a power
of p. Write |p;| = pfi for all i and for f; > 1. By unique factorization of prime
ideals, any ideal I with |I| = p¥ can be written uniquely as I = p{* - - - py?, where
a; > 0 and, by taking norms on both sides,

v=aifi+-+ayfy.



Thus

ri(p’) = I CZk | |I| = p"}
= ’{Pcfl"'pgg CZk | U:a1f1+"'+agfg}’

= |{(a1fi,...,aqfy) | aifi >0 and Zaifi = v}
< |{(a17-"aag) ’ a; >0 and Zai :’U}|,

where in the last step we have extended the set by allowing for all g-tuples
(a1,...,aq) of nonnegative integers whose sum is v, instead of merely those where
each b; = a; f; is a multiple of f;. We obtain the desired result by noting that g < k,
so we can extend the set further by considering k-tuples (a1, ..., a) rather than
g-tuples.
For any (a1,...,a;) with a; > 0 and >, a; = v, we must have 0 < a; < v+ 1 for
all 4, so there are at most v + 1 choices for each a; and thus < (v + 1)* elements
total in this set.

4. Deduce that for all e > 0, we have the bound rg(n) < n for all n > 1. (Hint: use
the previous exercise.)
Solution: For a prime power p¥, we have d(p”) = v + 1, since the factorizations of
p? are precisely p?p® where 0 < a,b < v and a + b = v, of which there are v + 1.
Thus rx (p¥) < d(p¥)*, and by multiplicativity for all n, rx(n) < d(n)*.
By the previous question, for all € > 0, d(n) < n/*, and thus rx(n) < nt.

4. Let f be an arithmetic function, and suppose that for every prime number p, there
exist complex numbers «;, and ), such that a,8, =1 and

Y fn= =] —am™) (1= Bpp®) !
n>1 p

for Re(s) large enough.

1. Show that for all primes p and all integers v > 0, we have

F') =Y ajBy .

J=0

Solution: By geometric series expansion, for large enough Re(s),

Z_:l fgj)

H(l - O‘ppis)il(l - erpis)il

p
2 2
Qap | X Bp p
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where the inner sum is the coefficient of —& when the o, component and the

Bp component are multiplied. Let g(n) be the multiplicative function defined on
prime powers p¥ by g(p¥) = Z?;o a3 Bp 7. Then by the above, F(s) =Y 02 | fr(g) =
52 90 for all s with large enough Re(s).

n=1 ns

By Lemma 3.5.2, therefore, f = ¢, as desired.

. Assume that, for all € > 0, we have f(n) < n¢ for n > 1. Let p be a prime number.
Show that the power series
> Fh)X?

v>0
has radius of convergence > 1, and deduce that |ay,| = |8, = 1.

Solution: Assume that for all € > 0, f(n) < n° for all n > 1. Let p be a prime
number and fix X € C with |X| < 1. Let € > 0 be small enough that p¢|X| < 1.
Then

DoIFENXT <Y PP

v>0 v>0
= XD,
v>0
which is a power series with ratio less than 1 and therefore converges. Thus
> >0 J(Y) X" has radius of convergence > 1.
Assume by contradiction that |oy,| # 1. Since o, = i we can assume without loss
of generality that |a,| < 1 and |5p| > 1. Then choosing X = «,, we have

v
v v o__ v J RU—]
fON)X" =0y > ol
Jj=0
v
= ZO‘%BP_]’ since a8y = a8, =1
7=0

v
=2 5"
=0
1— Bp—?v—2
=T

Since |Bp| > 1, this approaches 1 (and not 0) as v — co. But then ), -, f(p*) X"
cannot converge, which contradicts the radius of convergence being > 1. Thus
loy| = |Bp| = 1.

. Conclude that, under the assumption of the previous question, we have |f(n)| <
d(n) for all n > 1.

Solution: Assume that f(n) < n® for n > 1. Then |ayp| = |5, = 1 by the previous
question, so that for any prime power pY,

v

F@) = Do epBy | < D lapl1Bp"7 = v +1=d(p"),
7=0

j=0 i—



so by multiplicativity |f(n)| < d(n) for all n > 1.

5. We recall that p(n) = [(Z)/nZ)*| for all n > 1.

1. Prove that

for all n > 1.

Solution: For d|n, ¢(d) is the number of integers 1 < k < d with (k,d) = 1. The
{1 <k<d]| (k,d) =1} is in bijection with the set {1 < ¢ <n | ({,n) =n/d},
via the transformation ¢ = % - k. Thus

n=[{1<e<n} =) {1<t<n| (6n)=n/d} =) od)
dln dn
Then by Mébius inversion, ¢(n) = >4, u(d) 7.
2. Prove that
Z o(n —:c + O(zlogx)

n<x

for x > 1.
Solution: By the previous part,

S =3 wd)

n<z n<z dln
=Y ud)y =
d<z n<x
h d\_n
= Zu(d) Z k, where n = dk
d<zx k<x/d
|x/d|(|x/d] +1
=" u(d /a)(l / l+1)
d<z
= Zu <2d2 O(x/d)) , since |y| =y + O(1)
d<z
= x—z L z 1 x
=3 (C(2) +O( )> +O (x> 1/d],

d<zx

where the first term is evaluated once again using the discussion after equation
(3.10) and the second term is O(z log x). Simplifying, and substituting ¢(2) = 72/6,
gives the result.



3. Prove that

o) =nT](1-1),

and deduce that n/¢(n) = O(logn) for n > 2. (Hint: bound it above by ((2) > 4, 1)

Solution: Since @ = de @, where @ is multiplicative, ) must also be

n
") _ 1 _1
pv P’

multiplicative. Thus it suffices to prove that for a prime power pY,
For this we also use problem (5.1):

(") _~pd) et L
Y _Z d _G/ZO e =1 p’

dlpv

since p(p®) = 0 for a > 2.
We then have

< logn,

as desired.

4. Deduce from problem (5.3) that the function e(n) = {m > 1 | ¢(m) = n}| is a
well-defined arithmetic function. Show that ¢(n) is even for all n > 3, and deduce

that the function e is not multiplicative.
m

Solution: By problem (5.3), if n = ¢(m), then @ = O(logm), and thus n =
Q(m/logm). Thus logn = Q(logm — loglogm) = Q(logm), so > = O(logn) and
m = O(nlogn).

This implies that for each n, there are at most O(nlogn) values m for which n =
©(m), and thus in particular finitely many. Thus e(n) is a well-defined arithmetic
function.

Assume first that n > 3 is odd. Then ¢(n) = n][,, (pgl). Since n is divisible by
some odd prime p > 3, p(n) is divisible by p — 1, and thus even. Now assume that
n > 3 is even. Then

TR O

pln pn
p>3



is an integer. If n is divisible by an odd prime p > 3, then

n) is even. If not, then n = 2* for some k > 2, and ¢(n) = % is

Since n is even,
(p = Dlep(n), so ¢

even.
Thus for all n > 3, p(n) is even (and note that ¢(1) = ¢(2) = 1). This implies that,
for example, e(3) = 0, but e(6) > 1 since ¢(7) = 6, so e cannot be multiplicative.
. Prove that the Dirichlet series

I3

—~

where R is a function defined by an infinite product over primes which is holomor-
phic in the half-plane defined by Re(s) > 0. Does the existence of this factorization
contradict the fact that e is not multiplicative?

Solution: For Re(s) > 1,

Re(s)

(log )
< Z>1 nRe(s) 7

D

m>1

1
p(m)s

which converges. Thus F(s) converges absolutely for Re(s) > 1. In this region,
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Define R(s) =[], <1 - 2% + 2% <1 - 110>8> . For Re(s) > 0, we have (1 - %)7 =
14 O(s/p), so that
R(s)=[[ (@ +0(sp~7),

P
which converges absolutely.
Note that the pth factor is a function of s, but is not a convergent series of the

form Zv>0 f;f:), so we get no contradiction.




6. Deduce that F' has analytic continuation to the region Re(s) > 0 with a unique
simple pole at s = 1 with residue

2
™ 1
TZGIPI(”ps»)-

Solution: From the previous problem, we can analytically continue F'(s) to the
region Re(s) > 0 by definining F'(s) = ((s)R(s) whenever Re(s) > 0. Then F(s)
has poles only when ((s) has poles (since R(s) is holomorphic in this region), and
thus F'(s) has a unique simple pole at s = 1. At s = 1, the residue of F(s) is

Ress=1(F(s)) = lim(s — 1)((s)R(s)

p
:HPQ—p+1
o plp—1)

2

which gives the desired expression under the substitution ((2) = %-.
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