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We will see early on in the course that Symmetric Spaces are quotients of certain Lie groups — it shouldn’t

be too surprising therefore that a solid understanding of Lie groups will be useful. If you’ve taken a course

about Lie Groups your knowledge will be more than sufficient; if you haven’t, these notes are meant to fill

the gaps. They can be skimmed through and then referred back to when needed throughout the course,

a passing familiarity with the definitions is already very good for the course!

As such we will make some simplifications and skip a lot of details (including all the proofs). Prof. A.

Iozzi’s Lie Groups notes (available on the course website) can be consulted when needed — the statements

should match very closely. You are encouraged to attempt all the exercises1. Also contact if there are

any mistakes or if anything isn’t clear; these notes are very brief and so there are a few concepts and

definitions I miss out.

1 Lie groups and Lie algebras

A Lie group is a group G that has a compatible manifold structure. That is, a Lie group is a manifold G

with smooth multiplication and inversion maps.

Since it is a smooth manifold we can do Differential Geometry on it, I’ll refer to certain important concepts

in passing. We will need some of these for the course, but they will introduced properly in the lectures. I

will mention some in passing below, as ever please don’t hesitate to contact if there are lingering doubts.

First examples of Lie groups:

(a) A countable2 discrete group is a 0-dimensional Lie group.

(b) (R,+) is a Lie group, as is (Rn,+).

(c) (R∗,×) is a Lie group, as is ((R∗)n,×) with pointwise multiplication.

(d) GL(n,R) is a Lie group. It is an open subset of Rn×n (given by the nonvanishing of det) and so

has dimension n2. More generally for a finite dimensional R-vector space V we have the Lie group

GL(V ).

(e) SL(n,R) is a Lie group. Using the Inverse Function Theorem we see that it has dimension n2 − 1.
1I don’t plan on writing solutions, but please feel free to contact if you would like any, or want any hints.
2By convention our manifolds are second countable.
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(f) O(n,R) is a Lie group of dimension
n(n−1)

2 .

(g) S1 = {z ∈ C ∣ ∣z∣ = 1} is a Lie group.

(h) A product of Lie groups is again a Lie group (so for example, Tn ∶ (S1)n is a compact Lie group).

Exercise 1. Verify the dimensions of SL(n,R) and O(n,R).

For any g ∈ G, consider the map Lg ∶ G → G ∶ x ↦ gx, which we call left translation by g. This is a

diffeomorphism of G, and so in particular gives an isomorphism deLg ∶ TeG → TgG. That is, locally G

looks everywhere the same, and we might hope that TeG contains some interesting algebraic information

connected to the group. In fact we can transfer any vector in TeG to one in TgG — and so we can

construct a G-invariant vector field. This gives a natural identification between TeG and Vect(G)G, the
space of G-invariant vector fields on G.

We hope that TeG retains some of the algebraic structure of the group G, at least locally. One way

to obtain an algebraic structure on TeG is to transport the Lie bracket from Vect(G)G via the above

identification, and indeed this is what we do in general. For our purposes, the concrete example below

will suffice.

Example 1. Consider the tangent space at the identity of GL(n,R), it is just the space of n×n matrices

Mn(R), which for reasons that will become clear in a moment we denote by gl(n,R). We have a natural

map exp ∶ gl(n,R) → GL(n,R) ∶ X ↦ I +X + 1
2X

2 + 1
3!X

3 +⋯, the matrix exponential. It is classical that

this converges for all matrices, and for every matrix has an invertible image.

Similarly in a small neighbourhood U of the identity we have the logarithm map

log ∶ U → gl(n,R) ∶ (I +A)↦ A − 1
2A

2 + 1
3A

3 +⋯

We might hope that exp(X) exp(Y ) = exp(X +Y ), but there is no reason for this to hold (unless for some

reason X and Y commute). But we can try (at least formally, or for X,Y very close to 0) to evaluate

the left hand side:

exp(X) exp(Y ) = (I +X + X2

2
+⋯)(I + Y + Y 2

2
+⋯)

= 1 + (X + Y ) +XY + X2

2
+ Y 2

2
+ higher order terms

and therefore

log(exp(X) exp(Y )) = (X + Y ) +XY + X2

2
+ Y 2

2
− 1

2
(X + Y )2 + higher order terms

= (X + Y ) + XY − Y X

2
+ higher order terms

and so the quantity [X,Y ] ∶=XY −Y X helps us multiply exp(X) and exp(Y )— this quantity ‘remembers’

the algebraic structure of GL(n,R), at least close to the identity.

Remark 2. In fact we can write exp(X) exp(Y ) = exp(Z) where Z = X + Y + [X,Y ] + ⋯ where all the

higher order terms involve recursions of [⋅, ⋅]. This is known as the Baker-Campbell-Hausdorff formula.
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Remark 3. Note that exp((t1 + t2)X) = exp(t1X) exp(t2X) and exp(tX)−1 = exp(−tX) and so exp ∶ R→
GL(n,R) is a (smooth) homomorphism, called a one-parameter subgroup of GL(n,R).

Definition 4. A Lie algebra is a finite dimensional vector space g over R with a bilinear operation

[⋅, ⋅] ∶ g × g→ g such that

[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]]

A morphism of Lie algebras is a linear map between them that commutes with the bracket operation.

Exercise 2. Verify that gl(n,R) with [X,Y ] ∶=XY − Y X is a Lie algebra.

The relation given in the definition is known as the Jacobi identity.

Exercise 3. Prove using the Jacobi identity that [⋅, ⋅] must be antisymmetric.

Remark 5. The Jacobi identity might seem a bit mysterious, but we have the following intuition: Consider

the ‘differential’ δX ∶ g→ g ∶ Y ↦ [X,Y ]. With respect to this, the Jacobi identity is just the Leibniz rule

(replacing products with Lie brackets).

Similarly to the example of GL(n,R) we can associate to every Lie group G a bracket on TeG turning

it into a Lie algebra, which we will denote g. This is a natural construction, as the followng Theorem

shows.

Theorem 6. Let φ ∶ H → G be a Lie group homomorphism (that is, a group homomorphism that is

smooth). Then deφ ∶ h→ g is a Lie algebra morphism.

Remark 7. This theorem allows us to compute the Lie bracket for Lie groups such as SL(n,R), O(n,R),
(at least once we know their tangent space at the identity — there is an exercise about this at the end),

since they are Lie subgroups of GL(n,R) (use the inclusion map).

Recall that we introduced the Lie bracket in the hope that it preserves some algebraic structure from G

at least close to the identity — and indeed this is true:

Theorem 8. Suppose two Lie groups G,G′ have isomorphic Lie algebras, then they are locally isomorphic.

That is, there are neighbourhoods of the identity e ∈ U ⊂ G, e ∈ V ⊂ G′ and a diffeomorphism φ ∶ U → V

such that φ(xy) = φ(x)φ(y) whenever x, y, xy ∈ U .

In fact we can ensure that the derivative of this local isomorphism at e is the given Lie algebra isomor-

phism. We also make note of the following fact:

Theorem 9 (Ado). Any Lie algebra is a Lie subalgebra of some gl(n,R).

Where a Lie subalgebra is a vector subspace h ≤ g such that [h,h] ⊂ h.
There is a clear relationship between a homomorphism φ ∶ G→H and its derivative deφ ∶ g→ h. It turns

out that the exponential3 is a natural transformation between the two.

Proposition 10 (Naturality of exp). Let φ ∶ H → G be a Lie group homomorphism. Then the following

diagram commutes:

3We only defined it for GL(n,R)! But not to worry — there is a general way to define it, and it coincides with our
definition for closed subgroups of GL(n,R)
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H G

h g

φ

deφ

exp exp

Remark 11. It might be tempting to conclude from Ado’s Theorem (Theorem 9) that all Lie Groups

are (isomorphic to) closed subgroups of some GL(n,R). This is not the case, for example the universal

cover of SL(2,R) is a Lie group that doesn’t embed in any GL(n,R). However from Ado’s Theorem and

Theorem 8 we can conclude that every Lie group is locally isomorphic to a Lie subgroup of GL(m,R).

We note however all the groups we will be considering in this course will in fact be closed subgroups of

some GL(n,R). This is a fact about semisimple groups, which we will come back to later. So for our

purposes, thinking of everything as matrices is sufficient.

We list some useful facts in the following theorem:

Theorem 12. Let G be a connected Lie group with Lie algebra g.

(a) If H is a closed subgroup of G then it is also a Lie group;

(b) If G is connected and abelian then it is isomorphic to Tn ×Rm. It is simply connected if and only

if n = 0, and compact if and only if m = 0;

(c) If h′ ≤ g is a Lie subalgebra, then there is a unique pair (H,φ) where H is a Lie group and

φ ∶ H → G is an injective group homomorphism such that φ(H) is an immersed submanifold, such

that dφ(h) = h′;

(d) φ as above is an embedding if and only if φ(H) is closed in G;

(e) A closed subgroup H ≤ G is is normal if and only if h is an ideal in g.

Definition 13. A subspace h ≤ g is an ideal if [h,g] ⊂ h.

2 All things adjoint

You will have seen (or will soon see, I’m sure), that understanding the representations of a group G goes

a long way to understanding the group itself. By a representation (in this course) we mean a smooth

homomorphism ρ ∶ G → GL(V ), where V is for some finite dimensional vector space. Given such a

representation, we get an associated representation of the Lie algebra, given by deρ ∶ g→ gl(V ). That is,

de(ρ)(X)(v) ∶=
d

dt
∣
t=0

ρ(exp(tX))(v)

Remark 14. Checking that such a map is smooth might seem daunting, but it is a fact that any continuous

(in fact, any measurable) homomorphism between Lie groups is automatically smooth.

Exercise 4. Let ρ ∶ G → GL(V ) be a representation of connected Lie group G, and W ≤ V a subspace.

Show that W is ρ(G)-invariant if and only if it is deρ(g)-invariant.
Hint: You should use the naturality of exp, and the fact that any element of g ∈ G can be written as the

product of exp(X1)⋯ exp(Xk) for some Xi ∈ g.
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There is an important representation we will look at, which comes from a natural group action. For any

g ∈ G, consider cg ∶ G→ G ∶ h↦ ghg−1.

Exercise 5. Show that decg ∶ g→ g is a Lie Algebra automorphism.

Definition 15. Let G be a Lie group.

(a) The Adjoint representation of G is Ad ∶ G→ GL(g) ∶ g ↦ decg;

(b) The adjoint representation of g is ad ∶ g→ gl(g) defined by ad = deAd.

This all seems confusing, but in fact we can say what these representations are concretely (at least in

many cases of interest).

Proposition 16. (a) If G ≤ GL(n,R) is a closed subgroup then for g ∈ G and X ∈ g,

Ad(g)(X) = gXg−1

(b) If G is any Lie group, and X,Y ∈ g, then

ad(X)(Y ) = [X,Y ]

In fact, this is often given as the definition of the adjoint representation (and you can think of it as

such).

Consider the centre Z(G) of a closed subgroup G ≤ GL(n,R). It is clear that if g ∈ Z(G) then g ∈ kerAd.
In fact the converse is also true, for any Lie group we have

Z(G) = kerAd and Z(g) = ker ad

3 Semisimplicity

Definition 17. A Lie algebra is simple if it isn’t abelian and its only ideals are {0} and g. It is semisimple

if it is the direct sum of simple ideals.

We say a connected group G is (semi)simple if g is.

Proposition 18. (a) G is a connected simple Lie group if and only if every connected normal proper

subgroup is trivial.

(b) G is a connected semisimple Lie group if and only if every connected normal abelian subgroup is

trivial.

Exercise 6. Show that if g is semisimple, then g = [g,g].

There is an important bilinear form associated with g.

Definition 19. The Killing form is Bg ∶ g × g→ R ∶ (X,Y )↦ Tr(ad(X)ad(Y )).

Exercise 7. Show that Bg is independent of the choice of basis on g, and that Bg(X,Y ) = Bg(Y,X).
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Exercise 8. Show that Bg is ad-invariant4. That is, for all X,Y,Z ∈ g,

Bg(ad(X)(Y ), Z) +Bg(Y,ad(X)(Z)) = 0

The key use for us is that the Killing form can detect whether a Lie algebra is semisimple.

Theorem 20 (Dieudonné). g is semisimple if and only if Bg is non-degenerate.

Notice that non-degenerate doesn’t mean definite. This only happens in a specific case:

Theorem 21. Let G be a connected semisimple Lie group. Then the following are equivalent:

(a) G is compact;

(b) Bg is negative definite;

(c) Bg is definite.

4 Further exercises

Exercise 9. Show that the derivative of the determinant function is the trace function.

Exercise 10. Compute the Lie algebras of the following groups:

(a) SL(n,R);

(b) O(n,R);

(c) O(p, q) (the real matrices that preserve a quadratic form of signature (p, q)).

For (b) and (c) you may use the following fact:

If A,B ∶ (−ε, ε)→ Rn×n are smooth curves and φ(s) ∶= A(s)B(s), then

φ′(s) = A′(s)B(s) +A(s)B′(s)

Exercise 11. Let g =⊕i∈I gi be the direct sum of simple ideals. Show that any ideal h ⊴ g is of the form

h =⊕j∈J gj with J ⊂ I.

Remark 22. This implies immediately:

(i) Any semisimple Lie algebra has a finite number of ideals.

(ii) Any connected semisimple Lie group with finite center has a finite number of connected normal

subgroups.

4This might seem like an odd way to define ‘invariance’, but it is simply the derivative of Ad-invariance.
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