Prof. Dr. A. Tozzi Symmetric Spaces HS 2024

Solutions Exercise Sheet 1

1. Let G = SLa(R). The aim of this exercise is to show that Gz = SL2(Z) is a lattice in G.

(a) Argue that Gy is discrete in G and that both G and Gz are unimodular.

Solution. SL(n,Z) is contained in Z™*™, which is a discrete subset of R™*"; it follows
that Gy is discrete in G by restriction from R™*™ to G. In addition, Gz is unimodular
since it is discrete (and so the Haar measure is the counting measure). For G we recall the
fact that |det(x;;)| ! da1y - - - dxpy, is the bi-invariant Haar measure in GL(n,R) and that
G is a closed normal subgroup of GL(n,R) (see the Lie Groups lecture notes, Proposition
2.3, on page 28).

From this we know that G /Gy admits a nonzero G-invariant measure p which is unique up to
a non-zero constant. In order to show that Gz is a lattice we have to show that u(G/Gz) < co.
For this, we will use the following fact:

(b) Assume that there exists a measurable set A C G of finite measure such that every Gz-
orbit intersects A (that is, for every g € G there exists some v € Gz such that gy € A).
Show that u(G/Gz) is finite.

Solution. Recall Weil’s formula (Lie Groups notes, Theorem 2.4 on page 34) which
for the (integrable) characteristic function x4 of A in G states that

u) = [ xato)dg = [ - ( [ xatm dh) d(1Gz)

By the assumption the inner integral is always greater than some absolute constant
depending only on the Haar measure of Gz, and so we infer that u(A) > cu(G/Gz).

(¢) Show that the map sending

az+b
cz+d

b
g=<z d)ESLg(R)tozm—)g-z::

is a group homomorphism SLy(R) — Bih(H?), where Bih(H?) denotes the biholomorphic
maps of the complex upper half plane H? = {z € C|Im(z) > 0}. Show that its kernel is
{1} where I denotes as usual the 2 x 2 identity matrix.

These maps are known as Mobius transformations.



Solution. Define the automorphy factor j : SL(2,R) x H? — C by

j(v,2) = (cz+d) where v = (Z Z)

For all z € H one has the trivial matrix relations
z\ _ f(az+0b\ . Gis) vz
1) " \ezvd) =9I 1

Given «, 8 € SL(2,R) one now computes a3 (i) in two different ways: this yields
both

o8 (2) =08, (%) & a8 (2) = st p9508. 5 (67)

It follows that we have the automorphy relation j(af,z) = j(a,B2)ji(8,2) (also
commonly referred to as the cocycle condition) and furthermore that (a8)z = a(82).
Hence SL(2,R) — Bih(H?) is indeed a homomorphism, the remaining assertions are
easy to verify.

(d) Prove that the induced homomorphism
PSLy(R) = SLy(R)/ {1} — Bih(H?)

of (c) is actually an isomorphism. For the action of SLy(R) on H? from above determine
the orbit Gi and stabilizer K of i € H2. (Show also that K is compact.) Using this,
show that we have a diffeomorphism

G/K —H?, g—g-i.

Solution. It suffices to show that any biholomorphism of H? is actually a Mdbius
map. Note that the Cayley transform ¢ : z +— z—jrz maps the upper-half plane
H? biholomorphically to the (open) unit disc D, and so we have an isomoprhism
Bih(H?) — Bih(D?) : ¢+ @ otp o L.

As such, we identify the SL(2,R) action on H? with the SU; 1(C) action on D, and
so it suffices to show that the latter is the group of biholomorphisms of D . The

SU; 1(C)-action is given by

(a b) 2= +E (where |a|? — |b]?> = 1)
b a bz +a

(You should verify this carefully!)




Now let ¢ be an arbitrary biholomorphism of D, let b = —p(0) and set

1 1 b
¢’1+\b|2 <b 1)05"

This is a biholomorphism of D which fixes 0. The classical Schwarz lemma tells
us that ¥(z) = ez for some 6 € [0,2), which implies that in fact ¢ € SU; 1(C)
whence the result.

To see that the action is transitive note that

12 p=1/2\ ’

for any x + iy € H?. Furthermore,

6 DY L Y b= ctid
c d ci+d

Taking real and imaginary parts, one deduces that the stabiliser of i is SO(2,R).
That G/K — H? is a diffeomorphism follows from standard arguments in Differen-
tial Geometry, see Helgason I1.3.2 and 11.4.3(a).

P:{(S abl> |a,beR,a>0},
1/2
A—{(yo y_2/2> |yeR+},and
N:{(é 51”) |x€R}.

Prove the Iwasawa decomposition, i.e. show that

Px K— G, (p, k) — pk

(e) Set K = S02(R),

and
NxA— P, (n,a) — na
are diffeomorphisms. Are these also Lie group isomorphisms?
Show that P is a semidirect product N x A and that we have the diffeomorphism N x A &
HZ2.
This decomposition is known as the Iwasawa decomposition.

Solution. It is easy to verify that PN K = NN A = {Id}, and so the maps
Px K — Gand N x A— P are injective.

Consider now a matrix g € GG, we can consider it as determining a basis g; = g - e;.
Apply the Gram-Schmidt algorithm for the usual inner product on R? to find a
matrix p € P such that p~'g € K, a simple argument shows that N x A — P is
surjective. Neither of these maps are a homomorphism, however since NA = P,




NNA={1} and N <P one has P =N x A.

Caveat: Showing that a differentiable map is bijective does not suffice to prove that
it is a diffeomorphism, however the Gram-Schmidt algorithm provides us directly
with a differentiable inverse.

Finally H? 2 G/K =2 (N x Ax K)/K = N x A.

(f) Prove that K is unimodular by showing that duge = y~2dxdy, z = x+iy, is a G-invariant
volume form on the G-homogeneous space H?2.

Solution. The derivative of f, : z + %2 is
cz+d

a(cz +d) — claz + d)
(cz + d)?

= (cz+d)~?
Write Re(fy) = uy and Im(f;) = vy. The Cauchy-Riemann equations imply that

(%1;5’ aéjf) _ (Re(cz +d)™2 —Im(cz + d)2)

% % ~ \Um(cz+d)™2 Re(cz+d)?2

and the determinant A of this matrix is |cz + d|~*. Now we calculate

az+b
cz+d

=5
g*(dzdy) = Adzdy = |cz+d|™* and g¢*(y~2) =Im ( ) =y 2lez+d|™*

and therefore gh, = g2 and the assertion follows from Weil’s formula.

(g) Let
F={z€H?*|(]z] >1and —1/2 <Re(z) < 1/2) or (Jz| =1 and —1/2 < Re(z) < 0)}.

Show that for all z € H? the orbit Gzz intersects F in a unique point.
Hint: For every Gz-orbit Gz, z € H?, consider w € Gz 2z with maximal imaginary part.

Solution. Note that

m (210 = ) {=Im(z>|d—2 if =0

cz+d) <Im(z)|c|™® otherwise

" ez +d|?

Hence given some z € H? the function Gz — H : v — Im(yz) obtains a maximum,
say at w = ypz. Since (§1) acts by translations z — z + 1 we may assume that
—1/2 < Re(w) < 1/2. In addition since (% §) acts as inversion z — 2~! and
Im(—1/w) = Im(w)|w| =2 one clearly has |w| > 1.

It remains to show that we may impose —1/2 < Re(w) < 0 if |w| = 1 and this
follows from considering z — —1/z again.

Thus each orbit Gz - z intersects F, to show it is a fundamental domain it remains
to show that z,~vz € F implies z = vz — this follows by similar considerations to




’ the above, and is left to the reader.

(h) Show that the volume of F with respect to pgz is 7/3. Deduce that u(G/Gz) < .

Solution. We can calculate

1/2 o
/ dpg2 :/ / y~2dx
F —1/2 JV/1=2?

1/2 y
=il =00
= —y _ ——dydx
/1/2 y=vi-a*

1/2
:/ (1—2>)"V2da

—1/2

a=il//9)

= /3.

= arcsin(z)|

r=—1/2

The second assertion follows from part (b) applied to A = F.

2. Consider the hyperbolic n-space

H" = {p € R"": b(p,p) = —1 and ppy1 > 0}

defined by the bilinear form b(p,q) = p1g1 + ... + PnGn — Pnt+19dn+1. The tangent space at a

point p € H" is defined as
T,H" = {x e R

(a) Show that T,H" = {x € R b(p,x) = ()},

There exists a smooth path v: (—1,1) — H"
such that y(0) = p and 4(0) =«

b

Solution. Consider any « € T,H", and let v: (—1,1) — H" be a smooth path such
that v(0) = p and 4(0) = x. For every t € (—1,1), b(vy(t),v(t)) = —1, since v takes
values in H". We write v(t) = (71(¢), - , Ynt1(2)).

Taking the derivative we see that

0= %b(v(t)m(t)) = % <Z Yty - 7n+1(t)2> _ Z 27%; ()i (£) =291 () Fnr1 (t)

and at ¢t = 0 this is
0= 7%(0)%(0) = Y+1(0)4n+1(0) = Y pi®i — P41 - Tnt1 = b(p, ).
i=1 i=1

Thus we have shown that T, H" C {x € R b(p,x) = O}, but since dim T,H" = n
we must have equality.

(b) Show that g, = b|z,mn: T,H" x T,H" — R is a positive definite symmetric bilinear form

on T,H™ (this means that g, is a scalar product, and (H", g) is a Riemannian manifold).
Hint: Use (a) and the Cauchy-Schwarz-inequality on R™.



Solution. Bilinearity and symmetry b(z,y) = b(y,x) follow directly, so we just
need to show positive definiteness. Using (a) we can write any p € H* C R® x R
and x € T,H" C R" xR as

pz(ﬁ’,\/lp’l2+1) €eH" CR" xR
/ !
o= (o P2 € T,H" C R™ x R
VIp'?+1

where (- ,-) is the standard scalar product in R™. To show positive definiteness it
remains to prove that for all x € T,,H"

b(xz,x) > 0.

with equality if and only if x = 0. Indeed, by the Cauchy-Schwarz-inequality

(') <P Pla’l? < Ip'Pla'|? + |21 = (10 + 1)’

and thus R
|$L'/|2><p7x>
PP+l
and so o 2)?
p,T
b(z,z) = |2/ — =12 >0
(z,2) = || 1 2

with equality if and only if 2’ = 0 (which forces = = 0).

(c) Show that the map s,: R"™!1 — R+ ¢ — —2p-b(p, ) — ¢ defines a well defined geodesic
symmetry of H™ (that is, it is an involution with an isolated fixed point p). This means
that the hyperbolic plane H" is a Riemannian (globally) symmetric space.

Solution. To see firstly that s, is well-defined we write as before
p= (pﬁ VP12 + 1) , q= (q’, V2 + 1) e H" c R" x R.

and so in particular

b(p,q) = (¢, a') = VIPP+ 1V]gP +1
By using the definition we have that

sp(q) = —2p-b(p,q) — ¢

— (-2 - b0,0) — o, —2VIPP +1-b(p,0) - VIg P +1)




and so we calculate
b(sp(0), p(0)) = 4p'|*b(p, 9)* + 4, ¢ )b(p, q) + |¢'|?
- (4(Ip’|2 +1)b(p,q)> + 4>+ 1V/]d' 2 + 1 -b(p,q) + |¢')* — 1)

= 4(p',¢")b(p, q) — 4b(p,0)* — 4/ I’ + 1V/I¢']> + 1 - b(p, q) — 1
= 4b(p, 9)b(p, q) — 4b(p,q)* =1 = —1

So indeed s,(q) € H" as required.

Note also that s,(p) = —2p(—1) —p = p is a fixed point. Next we show that s, is an
isometry, so we need to look at the differential

dpsp: TpM — Tsp(p)M = TpM.

If we write the points ¢,p € H" C R™*! in the standard basis {e;};, we get the partial

derivatives
0 i ifi<n
) =4, 7S

ox; —Ppy1 fi=n+1

is B —2p-p; —e; ifi<n
Ox; P |20 Pnt1 —€ny1 ifi=n+1

and thus for v € T,M we have

—2p7 -1 —2p1p2 200 2p1Pn+1
—2pap1 —2p53 -1 .- 2p2Pnt1
(dpsp)v = . . . v
—2pnt+1p1 —2pn+1D2 200 2p2 -1
—2p3v1 — 2p1p2vs — -+ + 2P1 Pt 1Vnt1
—2pop1v1 — 2p3va — + -+ + 2PoPni1Unt1
= . — v
—2pn+1P1V1 — 2Ppy1P2ve — - + 2p%+1vn+1
—2b(p, v)p1
—2b(p, v)p2
= . —v=—v
—2b(p7 U)pn

where we used that b(p,v) = 0 from part (a). Using linearity we have that

gsp(p)((dpsp)va (dpsp)w) = gp(—v, —w) = gp(v, w),

S0 Sp 1s an 1sometry.




Now let us argue why p is an isolated fixed point, indeed suppose that s,(q) = ¢ for
some ¢ € H". Then —2p - b(p,q) — ¢ = ¢, so ¢ = —b(p,q)p, and in particular ¢ = Ap
for A\ some constant. Then —1 = b(q,q) = b(Ap, Ap) = A\2b(p,p) = —A% and so A = +£1.
A = —1 corresponds to g,+1 < 0, which is excluded since H" is only the upper sheet of
the hyperboloid, and so ¢ = p and s, has an isolated fixed point.

By lemma I1.5 of the lecture, d,s, = — Idr,u~ is equivalent to s, o s, = Idyn~, and so we
are done. Alternatively we can calculate

sp 0 5p(q) = sp(—2p - b(p, q) — q)
= —2p-b(p,—2p-b(p,q) —q) — (=2p-b(p,q) — q)
=4p - b(p,q)b(p,p) +2p - b(p,q) +2p - b(p,q) + ¢ =¢q

3. Show that A — gAg' defines a group action of SL(n,R) 3 g on
Pl(n) = {A € Myxn(R): A= A", detA=1, A>>0}.

Show that this action is transitive (that is, VA, B € P!(n) there exists some g € SL(n,R)
such that gAgt = B).

You may use the Linear Algebra fact that symmetric matrices are orthogonally diagonalisable
(that is, if A= A', then 3Q € SO(n,R) such that QAQ? is diagonal).

Solution. We write the group action as g.A = gAgt. We first need to show that the
action is well defined.

o (Symmetry) (- A)" = (gAg")" = gATg" = gAg" =g A;
e (Determinant) det(g - A) = det(g)det(A)det(g?) = det(A4) = 1;
e (Positive definite) Let x € R™\{0}, then

2T (g- A)x = 2TgAg"x = (¢Tx)T A(gTx) > 0
since g7z € R™\{0}.

We also note that it is a group action — clearly Id-A = A, and (gh) - A = ghAhTgT =
g-(h-A).

It remains to show that the action is transitive. Let A, B € P!(n). We can use linear
algebra to get @, R € SO(n) < SL(n,R) such that Q.A and R.B are diagonal, have
determinant 1 and are positive definite (by the well-definedness of the group action).
Positive definiteness implies that all entries are non-negative. Then the matrix A =
(Q-A)(R-B)~! is also diagonal, has determinant 1 and positive elements on the diagonal.
We can therefore take the component-wise square root v/A of A.

Set g = Q@ 'vAR € SL(n,R) and use the fact that R.B commutes with v/A since they




are diagonal to see that
g-B=Q 'WAR-B=Q'- (VAR B)x/KT) =Q™" (\fAJKTR . B)
—Q ' (AR-B)=Q ' (@ A)(R-B) (R B)=Q'Q A=A

this shows that from any point B € P'(n) you can go to any point A € P*(n) by the
action of SL(n,R) (the action is transitive).




