Solutions Exercise Sheet 1

- 1. Let $G = SL_2(\mathbb{R})$. The aim of this exercise is to show that $G_{\mathbb{Z}} = SL_2(\mathbb{Z})$ is a lattice in G.
	- (a) Argue that $G_{\mathbb{Z}}$ is discrete in G and that both G and $G_{\mathbb{Z}}$ are unimodular.

From this we know that $G/G_{\mathbb{Z}}$ admits a nonzero G-invariant measure μ which is unique up to a non-zero constant. In order to show that $G_{\mathbb{Z}}$ is a lattice we have to show that $\mu(G/G_{\mathbb{Z}}) < \infty$. For this, we will use the following fact:

- (b) Assume that there exists a measurable set $A \subseteq G$ of finite measure such that every $G_{\mathbb{Z}}$ orbit intersects A (that is, for every $g \in G$ there exists some $\gamma \in G_{\mathbb{Z}}$ such that $g\gamma \in A$). Show that $\mu(G/G_{\mathbb{Z}})$ is finite.
- (c) Show that the map sending

$$
g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R}) \text{ to } z \longmapsto g \cdot z := \frac{az + b}{cz + d}
$$

is a group homomorphism $SL_2(\mathbb{R}) \to \text{Bih}(\mathbb{H}^2)$, where $\text{Bih}(\mathbb{H}^2)$ denotes the biholomorphic maps of the complex upper half plane $\mathbb{H}^2 = \{z \in \mathbb{C} | \text{Im}(z) > 0\}$. Show that its kernel is $\{\pm I\}$ where I denotes as usual the 2×2 identity matrix.

These maps are known as Möbius transformations.

(d) Prove that the induced homomorphism

$$
\mathrm{PSL}_2(\mathbb{R}) = \mathrm{SL}_2(\mathbb{R}) / \{ \pm I \} \to \mathrm{Bih}(\mathbb{H}^2)
$$

of (c) is actually an isomorphism. For the action of $SL_2(\mathbb{R})$ on \mathbb{H}^2 from above determine the orbit Gi and stabilizer K of $i \in \mathbb{H}^2$. (Show also that K is compact.) Using this, show that we have a diffeomorphism

$$
G/K \longrightarrow \mathbb{H}^2, g \longmapsto g \cdot i.
$$

(e) Set $K = SO_2(\mathbb{R})$,

$$
P = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in \mathbb{R}, a > 0 \right\},
$$

$$
A = \left\{ \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix} \mid y \in \mathbb{R}^+ \right\}, \text{ and}
$$

$$
N = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \right\}.
$$

Prove the Iwasawa decomposition, i.e. show that

$$
P \times K \longrightarrow G, (p, k) \longmapsto pk
$$

and

$$
N \times A \longrightarrow P, (n, a) \longmapsto na
$$

are diffeomorphisms. Are these also Lie group isomorphisms? Show that P is a semidirect product $N \times A$ and that we have the diffeomorphism $N \times A \cong$ \mathbb{H}^2 .

This decomposition is known as the Iwasawa decomposition.

- (f) Prove that K is unimodular by showing that $d\mu_{\mathbb{H}^2} = y^{-2} dx dy$, $z = x+iy$, is a G-invariant volume form on the G-homogeneous space \mathbb{H}^2 .
- (g) Let

$$
\mathcal{F} \coloneqq \{ z \in \mathbb{H}^2 \mid (|z| > 1 \text{ and } -1/2 \le \text{Re}(z) < 1/2) \text{ or } (|z| = 1 \text{ and } -1/2 \le \text{Re}(z) \le 0) \}.
$$

Show that for all $z \in \mathbb{H}^2$ the orbit $G_{\mathbb{Z}} z$ intersects $\mathcal F$ in a unique point.

- <u>Hint:</u> For every $G_{\mathbb{Z}}$ -orbit $G_{\mathbb{Z}}z, z \in \mathbb{H}^2$, consider $w \in G_{\mathbb{Z}}z$ with maximal imaginary part.
- (h) Show that the volume of F with respect to $\mu_{\mathbb{H}^2}$ is $\pi/3$. Deduce that $\mu(G/G_{\mathbb{Z}}) < \infty$.
- 2. Consider the hyperbolic n -space

$$
\mathbb{H}^{n} = \{ p \in \mathbb{R}^{n+1} \colon b(p, p) = -1 \text{ and } p_{n+1} > 0 \}
$$

defined by the bilinear form $b(p,q) = p_1q_1 + ... + p_nq_n - p_{n+1}q_{n+1}$. The tangent space at a point $p \in \mathbb{H}^n$ is defined as

$$
T_p\mathbb{H}^n = \left\{ x \in \mathbb{R}^{n+1} \colon \begin{array}{c} \text{There exists a smooth path } \gamma \colon (-1,1) \to \mathbb{H}^n \\ \text{such that } \gamma(0) = p \text{ and } \dot{\gamma}(0) = x \end{array} \right\}.
$$

- (a) Show that $T_p \mathbb{H}^n = \{ x \in \mathbb{R}^{n+1} : b(p, x) = 0 \}.$
- (b) Show that $g_p = b|_{T_p\mathbb{H}^n} : T_p\mathbb{H}^n \times T_p\mathbb{H}^n \to \mathbb{R}$ is a positive definite symmetric bilinear form on $T_p\mathbb{H}^n$ (this means that g_p is a scalar product, and (\mathbb{H}^n, g) is a Riemannian manifold). Hint: Use (a) and the Cauchy-Schwarz-inequality on \mathbb{R}^n .
- (c) Show that the map $s_p: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$, $q \mapsto -2p \cdot b(p, q) q$ defines a well defined geodesic symmetry of \mathbb{H}^n (that is, it is an involution with an isolated fixed point p). This means that the hyperbolic plane \mathbb{H}^n is a Riemannian (globally) symmetric space.
- 3. Show that $A \mapsto gAg^t$ defines a group action of $SL(n, \mathbb{R}) \ni g$ on

$$
\mathcal{P}^{1}(n) = \{ A \in M_{n \times n}(\mathbb{R}) : A = A^{t}, \text{ det}A = 1, A \gg 0 \}.
$$

Show that this action is transitive (that is, $\forall A, B \in \mathcal{P}^1(n)$ there exists some $g \in SL(n, \mathbb{R})$ such that $g A g^t = B$.

You may use the Linear Algebra fact that symmetric matrices are orthogonally diagonalisable (that is, if $A = A^t$, then $\exists Q \in SO(n, \mathbb{R})$ such that QAQ^t is diagonal).