
Prof. Dr. A. Iozzi Symmetric Spaces HS 2024

Exercise Sheet 2

Exercise 1 (Compact Lie groups as symmetric spaces). Let G be a compact connected Lie group
and let

G∗ = {(g, g) ∈ G×G : g ∈ G} < G×G

denote the diagonal subgroup.

(a) Show that the pair (G×G,G∗) is a Riemannian symmetric pair, and the coset space G×G/G∗

is diffeomorphic to G.

Solution. Consider the mapping σ : (g1, g2) 7→ (g2, g1). This is an involutive automor-
phism of the product group G × G. The fixed set of σ is precisely the diagonal G∗.
It follows that the pair (G × G,G∗) is a Riemannian symmetric pair. The coset space
G×G/G∗ is diffeomorphic to G under the mapping [(g1, g2)] 7→ π(g1, g2) := g1g

−1
2 .

(b) Using the above, explain how any compact connected Lie group G can be regarded as a
Riemannian globally symmetric space.

Solution. By Proposition 3.4 from Helgason, Ch. IV, we see that G is a Riemanian
globally symmetric space in each bi-invariant Riemannian structure; note here that a
Riemannian structure on G×G/G∗ is G×G-invariant if and only if the corresponding
Riemannian structure on G is bi-translation invariant.

(c) Let g denote the Lie algebra of G. Show that the exponential map from g into the Lie group
G coincides with the Riemannian exponential map from g into the Riemannian globally
symmetric space G.

Solution. Note that the product algebra g×g is the Lie algebra ofG×G. Let exp∗ denote
the exponential mapping of g×g int G×G, exp denote the exponential mapping of g into
G, and Exp denote the Riemannian exponential mapping of g ∼= TeG into G (considered
as a Riemannian globally symmetric space). We want to show that expX = ExpX for all
X ∈ g. Using dπ(X,Y ) = X − Y , we deduce that π(exp∗(X,−X)) = Exp(dπ(X,−X)).
Hence expX · (exp(−X))−1 = Exp(2X) and this implies that expX = ExpX.

Exercise 2 (Compact semisimple Lie groups as symmetric spaces). A compact semisimple Lie
group G has a bi-invariant Riemannian structure Q such that Qe is the negative of the Killing form
of the Lie algebra g = Lie(G). If G is considered as a symmetric space G×G/G∗ as in the above
exercise, it acquires a bi-invariant Riemannian structure Q∗ from the Killing form of g × g. Show
that Q = 2Q∗.
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Solution. Let π and σ be as in the above solution. The map dπ maps the −1 eigenspace of
dσ onto g as follows: dπ(X,−X) = 2X. Using this, we can check that

2Bg×g((X,−X), (X,−X)) = Bg(2X, 2X),

which is equivalent to Q = 2Q∗.

Exercise 3 (Closed differential forms). Let M be a Riemannian globally symmetric space and let
ω be a differential form on M invariant under Isom(M)◦. Prove that dω = 0.

Solution. Let sm denote the geodesic symmetry at some point m ∈ M , and let ω ∈ Ωp(M) be
an invariant differential p-form on M . Because dmsm = −Id : TpM → TpM , we get (s∗mω)m =
(−1)pωm at the point m ∈ M . Because ω is invariant, s∗mω is invariant as well. Because
Iso(M)◦ acts transitively, invariant differential forms are determined by their value at a single
point such that

s∗mω = (−1)pω

on all of M .

Therefore, we obtain

dω = (−1)pd(s∗mω) = (−1)ps∗mdω = (−1)2p+1dω,

whence dω = 0.

Exercise 4 (A symmetric space with non-compact K). Let G = ˜SL(2,R) and K = ˜SO(2,R). The
aim of this exercise is to show that (G,K) is a symmetric pair with non-compact K.

(a) Prove that σ : SL(2,R) → SL(2,R), g 7→ tg−1 is an involution.

Solution. σ is a homomorphism, and σ2 = Id, by standard properties of transpose and
inverse, the latter also shows that σ is a bijection. Also most matrices in SL(2,R) aren’t
fixed by σ, so in particular σ ̸= Id.

(b) By covering space theory we can lift σ to the universal cover G. Prove that σ̃ : G → G is
an involution as well. You may use that the universal cover of a path-connected topological
group is again a topological group.

Solution. Recall from covering space theory the following fact:

Let π : C → X be a cover and f : Y → X a continuous map. Pick y0 ∈ Y and c0 ∈ C,
which lies over f(y0) (that is, π(c0) = f(y0)). If Y is simply connected, then there exists
a unique lift f̃ : Y → C with π ◦ f̃ = f and f̃(y0) = c0.

In our case, Y = C = G is the universal cover, and thus is simply connected. Let us
write π : G → SL(2,R) and f = σ ◦ π. Fix an element Ĩd in the universal cover with
π(Ĩd) = Id, then we get a unique map σ̃ : G → G with σ̃(Ĩd) = Ĩd.
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We now have to show that σ̃ is a homomorphism, so consider the map

φ : G×G → G : (g, h) 7→ σ̃(gh)−1σ̃(g)σ̃(h)

Since π(gh) = π(g)π(h) (the multiplication in the universal covering is the lift of the
multiplication in the group), π is a homomorphism. We have

π(φ(g, h)) = π(σ̃(gh)−1σ̃(g)σ̃(h))

= π(σ̃(gh)−1)π(σ̃(g))π(σ̃(h))

= π(σ̃(gh))−1π(σ̃(g))π(σ̃(h))

= σ(π(gh))−1σ(π(g))σ(π(h))

= σ(π(g)π(h))−1σ(π(g)σ(π(h))

= Id = Ĩd

So φ is a lift of π ◦ φ, as is the constant function (g, h) 7→ Ĩd. By uniqueness of the lift
we conclude that φ(g, h) = Ĩd, that is σ̃ is a homomorphism.

Now note that π ◦ σ̃ ◦ σ̃ = σ ◦ π ◦ σ̃ = σ ◦ σ ◦ π = π, so σ̃ ◦ σ̃ as well as the constant
function g 7→ Ĩd are lifts of π, and so by uniqueness of lifts we obtain that σ̃ ◦ σ̃(g) = Ĩd
for all g ∈ G.

Finally, since σ is not the identity, σ̃ is not a lift of the identity, and so isn’t the identity
map.

(c) Prove that Gσ̃ = K ∼= R.

Solution. The map σ|SO(2) : SO(2) → SO(2) is the identity. The lift

σ̃|
S̃O(2)

: S̃O(2) → S̃O(2)

therefore also has to be the identity, by uniqueness of the lift. So if g ∈ K = S̃O(2), then
σ̃(g) = g, and g ∈ Gσ̃.

(d) Prove that AdG(K) = AdSL(2,R)(SO(2,R)).

Solution. The Lie algebra g only depends on a neighbourhood, so

Lie(SL(2,R)) = g = Lie( ˜SL(2,R))

Since the left-multiplication on the universal cover is the lift of the left-multiplication of
SL(2,R), they can be identified in a small neighbourhood around o = Id. The adjoint
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representation Ad(g) = docg is a derivative at a point, and thus only depends on a
neighbourhood. We conclude that the images of the adjoint representations are equal.

(e) Show that AdSL(2,R)(SO(2,R)) ≃ SO(2,R)/{±1}.

Solution. The elements g in the kernel satisfy X = gXg−1 for all

X ∈ sl(2,R) = {X ∈ R2×2 | Tr(X) = 0}

Let g =
(
a b
c d

)
and X = (

x y
z −x ) then we calculate

Xg =

(
ax+ cy bx+ dy
az − cx bz − dx

)
=

(
ax+ bz ay − bx
cx+ dz cy − dx

)
= gX

so bz = cy for all z, y ∈ R, so b = c = 0. Hence we have ay = dy and dz = az which
imply a = d.

Since g ∈ SO(2) we have det(g) = a2 = 1 and so a = d = ±1, and g = ± Id (and indeed
both are in SO(2)).

Exercise 5. (a) Let G be a connected topological group and N ◁ G a normal subgroup which
is discrete. Show that N ⊂ Z(G) is contained in the center Z(G) of G.

(b) Let (G,K) be a Riemannian symmetric pair and Z(G) the center of G. Show that AdG : G →
GL(g) induces an isomorphism of Lie groups:

K/(K ∩ Z(G)) → AdG(K) < GL(g).

Done in Lie Groups - contact if unsure.
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