Prof. Dr. A. Tozzi Symmetric Spaces HS 2024

Exercise Sheet 2

Exercise 1 (Compact Lie groups as symmetric spaces). Let G be a compact connected Lie group
and let
G ={(g,9) €eGxG:9eG}<GExG

denote the diagonal subgroup.

(a) Show that the pair (G x G, G*) is a Riemannian symmetric pair, and the coset space G x G/G*
is diffeomorphic to G.

Solution. Consider the mapping o: (g1, 92) — (g2,91). This is an involutive automor-
phism of the product group G x G. The fixed set of o is precisely the diagonal G*.
It follows that the pair (G x G,G*) is a Riemannian symmetric pair. The coset space
G x G/G* is diffeomorphic to G under the mapping [(g1,92)] — 7(g1,92) == g195 -

(b) Using the above, explain how any compact connected Lie group G can be regarded as a
Riemannian globally symmetric space.

Solution. By Proposition 3.4 from Helgason, Ch. IV, we see that G is a Riemanian
globally symmetric space in each bi-invariant Riemannian structure; note here that a
Riemannian structure on G x G/G* is G x G-invariant if and only if the corresponding
Riemannian structure on G is bi-translation invariant.

(¢) Let g denote the Lie algebra of G. Show that the exponential map from g into the Lie group
G coincides with the Riemannian exponential map from g into the Riemannian globally
symmetric space G.

Solution. Note that the product algebra gx g is the Lie algebra of GXG. Let exp* denote
the exponential mapping of g x g int G X G, exp denote the exponential mapping of g into
G, and Exp denote the Riemannian exponential mapping of g = T.G into G (considered
as a Riemannian globally symmetric space). We want to show that exp X = Exp X for all
X € g. Using dn(X,Y) = X — Y, we deduce that 7(exp* (X, —X)) = Exp(dr (X, —X)).
Hence exp X - (exp(—X))~! = Exp(2X) and this implies that exp X = Exp X.

Exercise 2 (Compact semisimple Lie groups as symmetric spaces). A compact semisimple Lie
group G has a bi-invariant Riemannian structure @ such that Q. is the negative of the Killing form
of the Lie algebra g = Lie(G). If G is considered as a symmetric space G x G/G* as in the above
exercise, it acquires a bi-invariant Riemannian structure @Q* from the Killing form of g x g. Show
that Q = 2Q*.



Solution. Let m and o be as in the above solution. The map dm maps the —1 eigenspace of
do onto g as follows: dm(X,—X) = 2X. Using this, we can check that

2BE><B((X7 _X)a (X7 —-X)) = Bg(2X7 2X),

which is equivalent to @ = 2Q*.

Exercise 3 (Closed differential forms). Let M be a Riemannian globally symmetric space and let
w be a differential form on M invariant under Isom(M)°. Prove that dw = 0.

Solution. Let s, denote the geodesic symmetry at some point m € M, and let w € QP(M) be
an invariant differential p-form on M. Because d,,,s,, = —Id: T,M — T, M, we get (s5,w)m =
(—1)Pw,, at the point m € M. Because w is invariant, s},w is invariant as well. Because
Iso(M)° acts transitively, invariant differential forms are determined by their value at a single
point such that

srw=(-1)Pw

on all of M.

Therefore, we obtain

dw = (—1)Pd(s},w) = (=1)Ps* dw = (—1)*PTdw,

*
m

whence dw = 0.
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Exercise 4 (A symmetric space with non-compact K). Let G = SL(2,R) and K = SO(2,R). The
aim of this exercise is to show that (G, K) is a symmetric pair with non-compact K.

(a) Prove that o: SL(2,R) — SL(2,R), g + g~ is an involution.

Solution. ¢ is a homomorphism, and o2 = Id, by standard properties of transpose and
inverse, the latter also shows that o is a bijection. Also most matrices in SL(2,R) aren’t
fixed by o, so in particular o # Id.

(b) By covering space theory we can lift o to the universal cover G. Prove that 6: G — G is
an involution as well. You may use that the universal cover of a path-connected topological
group is again a topological group.

Solution. Recall from covering space theory the following fact:

Let m: C — X be a cover and f : Y — X a continuous map. Pick yo € Y and ¢y € C,
which lies over f(yo) (that is, w(co) = f(yo)). If Y is simply connected, then there exists
a unique lift f:Y — C with wo f = f and f(yo) = co.

In our case, Y = C' = G is the universal cover, and thus is simply connected. Let us
write m : G — SL(2,R) and f = o o 7. Fix an element Id in the universal cover with
7(Id) = Id, then we get a unique map & : G — G with 5(Id) = Id.




We now have to show that & is a homomorphism, so consider the map
9:GxG—G:(g,h)— 6(gh)'5(g)5(h)

Since w(gh) = w(g)w(h) (the multiplication in the universal covering is the lift of the
multiplication in the group), 7 is a homomorphism. We have

So ¢ is a lift of 7o ¢, as is the constant function (g, h) Id. By uniqueness of the lift
we conclude that ¢(g,h) = Id, that is 6 is a homomorphism.

Now note that Tod o =comod =coocom =7, so dod as well as the constant
function ¢ — Id are lifts of 7, and so by uniqueness of lifts we obtain that 6 0 6(g) = Id
for all g € G.

Finally, since o is not the identity, ¢ is not a lift of the identity, and so isn’t the identity
map.

Prove that G° = K = R.

Solution. The map olgo(2) : SO(2) — SO(2) is the identity. The lift

Flso ¢ :50(2) = SO(2)

therefore also has to be the identity, by uniqueness of the lift. Soif g € K = S/é\/(Z)7 then
(g) =g, and g € G°.

Prove that Adg (K) = AdSL(27R)(SO(2,R)).

Solution. The Lie algebra g only depends on a neighbourhood, so

Lie(SL(2,R)) = g = Lie(SL(2, R))

Since the left-multiplication on the universal cover is the lift of the left-multiplication of
SL(2,R), they can be identified in a small neighbourhood around o = Id. The adjoint




representation Ad(g) = docy is a derivative at a point, and thus only depends on a
neighbourhood. We conclude that the images of the adjoint representations are equal.

(e) Show that Adsp, .z (SO(2,R)) ~ SO(2,R)/{1}.

Solution. The elements g in the kernel satisfy X = gXg~! for all
X €sl(2,R) = {X € R**? | Tr(X) = 0}

Let g = (‘1 g) and X = (‘z f’x) then we calculate

_fax+cy br+dy\ (ar+bz ay-—bzr\ _
Xg(az—c:lc bz—dx) \cx+dz cy—dz =gX

so bz = cy for all z,y € R, so b = ¢ = 0. Hence we have ay = dy and dz = az which
imply a = d.

Since g € SO(2) we have det(g) = a? =1 and so a = d = +1, and g = +1d (and indeed
both are in SO(2)).

Exercise 5. (a) Let G be a connected topological group and N < G a normal subgroup which
is discrete. Show that N C Z(G) is contained in the center Z(G) of G.

(b) Let (G, K) be a Riemannian symmetric pair and Z(G) the center of G. Show that Adg: G —
GL(g) induces an isomorphism of Lie groups:

K/(K N Z(G)) — Adg(K) < GL(g).

Done in Lie Groups - contact if unsure.




