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Exercise Sheet 3

Exercise 1. Consider G = SO(1, n)◦ with the involutive Lie group automorphism

σ : G → G, g 7→ JngJn

where

Jn =

(
−1 0
0 In

)
∈ SO(1, n).

Further let

K =

(
1 0
0 SO(n)

)
∼= SO(n).

It can be shown that (G,K, σ) is a Riemannian symmetric pair and that G/K is isometric to Hn.

(a) Show that Θ = dσ : g → g takes the form

Θ(X) =

(
0 −xt

−x D

)
for all

X =

(
0 xt

x D

)
∈ g = so(1, n).

Deduce that

p = E−1(Θ) =

{(
0 xt

x 0

)
: x ∈ Rn

}
,

k = E1(Θ) =

{(
0 0
0 D

)
: D ∈ so(n)

}
∼= so(n).

Solution. We compute

Θ(X) = JnXJn =

(
−1 0
0 In

)(
0 xt

x D

)(
−1 0
0 In

)
=

(
0 −xt

x D

)(
−1 0
0 In

)
=

(
0 −xt

−x D

)

for all X =

(
0 xt

x D

)
∈ so(1, n). Thus Θ(X) = −X implies D = 0, and likewise

Θ(X) = X implies x = 0.

1



(b) Let π : G → G/K denote the usual quotient map and set X := deπ(X) ∈ To(G/K) for all
X ∈ g. Further let ⟨X,Y ⟩ := 1

2 tr(XY ) for all X,Y ∈ p.

Show that
Ro(X,Y )Z = ⟨X,Z⟩Y − ⟨Y,Z⟩X

for all X,Y, Z ∈ p. Deduce that G/K has constant sectional curvature −1.

Hint: You may use the following formula without proof:

The Riemann curvature tensor at o ∈ M = G/K is given by

Ro(X,Y )Z = −[[X,Y ], Z]

for all X,Y , Z ∈ ToM .

Solution. Let

X =

(
0 xt

x 0

)
, Y =

(
0 yt

y 0

)
, Z =

(
0 zt

z 0

)
∈ p.

Note that

⟨X,Y ⟩ = 1
2 tr

((
0 xt

x 0

)(
0 yt

y 0

))
= 1

2 tr

(
xty 0
0 xyt

)
= ⟨x, y⟩,

where the latter is to be understood as the Euclidean inner product of the vectors x, y ∈
Rn.

By the given formula we obtain

Ro(X,Y )Z = −[[X,Y ], Z].

First, we compute

[X,Y ] =

(
0 xt

x 0

)(
0 yt

y 0

)
−

(
0 yt

y 0

)(
0 xt

x 0

)
=

(
xty 0
0 xyt

)
−

(
ytx 0
0 yxt

)
=

(
0 0
0 xyt − yxt

)
,

and then

[[X,Y ], Z] =

(
0 0
0 xyt − yxt

)(
0 zt

z 0

)
−

(
0 zt

z 0

)(
0 0
0 xyt − yxt

)
=

(
0 0

(xyt − yxt)z 0

)
−
(
0 zt(xyt − yxt)
0 0

)
=

(
0 ⟨y, z⟩xt − ⟨x, z⟩yt

⟨y, z⟩x− ⟨x, z⟩y 0

)
= ⟨Y,Z⟩X − ⟨X,Z⟩Y.

This implies our claim.
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As for the sectional curvature, let V ⊂ p be a two-dimensional linear subspace and choose
X,Y ∈ p to be an orthonormal basis of V . Then

κo(V ) = Ro(X,Y , Y ,X) = ⟨Ro(X,Y )Y ,X⟩ = ⟨⟨X,Y ⟩Y − ⟨Y, Y ⟩X,X⟩ = −1.

(c) Compute that

exp

(
t ·

(
0 1
1 0

))
=

(
cosh t sinh t
sinh t cosh t

)
for all t ∈ R.

Solution. Note that(
0 1
1 0

)2k

=

(
1 0
0 1

)
and

(
0 1
1 0

)2k+1

=

(
0 1
1 0

)
for all k ∈ N. Thus

exp

(
t ·

(
0 1
1 0

))
=

∞∑
n=0

tn

n!

(
0 1
1 0

)n

=

∞∑
k=0

t2k

2k!

(
0 1
1 0

)2k

+

∞∑
k=0

t2k+1

(2k + 1)!

(
0 1
1 0

)2k+1

= cosh t

(
1 0
0 1

)
+ sinh t

(
0 1
1 0

)
=

(
cosh t sinh t
sinh t cosh t

)
for all t ∈ R.

Exercise 2 (Closed adjoint subgroups of SLn(R) and their symmetric spaces). Consider the
Riemannian symmetric pair (G,K, σ) where G = SLn(R), K = SO(n,R) and σ : SLn(R) →
SLn(R), g 7→ t

(g−1). Further let H ≤ G be a closed, connected subgroup that is adjoint, i.e. it is
closed under transposition h 7→ th.

(a) Show that (H,H ∩K,σ|H) is again a Riemannian symmetric pair.

Solution. Note that H = σ(σ(H)) ⊆ σ(H) since σ : G → G is an involutive Lie group
automorphism. BecauseH ≤ G is a closed subgroup and hence an embedded submanifold
σ restricts to an involutive Lie group automorphism σ|H : H → H.

Let us check that (Hσ)◦ ⊆ H ∩ K ⊆ Hσ. Concerning the first inclusion note that
(Hσ)◦ ⊆ Hσ ⊆ Gσ whence (Hσ)◦ ⊆ (Gσ)◦. Then the first inclusion follows from
(Hσ)◦ ⊆ H and (Gσ)◦ ⊆ K. The second inclusion follows easily from the fact that
Hσ = H ∩Gσ and K ⊆ Gσ.
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Finally, K = SO(n,R) is compact whence the intersection H ∩K is also compact as is
the image AdH(H ∩K) ≤ GL(h).

(b) Show that i : H ↪→ G descends to a smooth embedding φ : H/H ∩K ↪→ G/K such that its
image is a totally geodesic submanifold of G/K.

Solution. Denote by π : G → G/K and π′ : H → H/H ∩K the usual quotient maps.
Define

φ : H/H ∩K → G/K, π′(h) 7→ π(i(h)).

That map is well-defined because

π′(h1) = π′(h2) ⇐⇒ h−1
2 h1 ∈ H ∩K

⇐⇒ i(h−1
2 h1) ∈ K

⇐⇒ π(i(h1)) = π(i(h2))

for all h1, h2 ∈ H. This argument also shows that φ is injective whence it is a bijection
onto its image N := imφ. We obtain the following commutative diagram.

H G

H/H ∩K N ⊆ G/K

i

π′ π

φ

Clearly, φ is continuous by the universal property of the quotient topology. We will now
show that φ : H/H ∩ K → N is proper, i.e. preimages of compact sets are compact.
That will prove that φ is actually open onto its image because proper continuous maps
are closed and continuous closed bijections are open. Let C ⊆ N ⊂ G/K be compact.
Because G is locally compact there is a compact set C ′ ⊆ G such that π(C ′) = C and

π−1(C) = π−1(π(C ′)) =
⋃
k∈K

C ′k

is compact, i.e. π is proper. Further i−1(π−1(C)) = H ∩ π−1(C) is compact since H is
closed. Finally, φ−1(C) = π′(i−1(π−1(C))) is compact since π′ is continuous. Therefore,
φ : H/H ∩K → N is a homeomorphism.

Note that the smooth structure on H/H ∩ K is such that π′ is a smooth submersion
whence φ : H/H ∩K → G/K is smooth because π ◦ i : H → G/K is smooth. Also, φ
is equivariant with respect to the respective H-actions on H/H ∩K and N . Because H
acts transitively on H/H ∩K it is easy to see that φ has constant rank. By the global
rank theorem [?, Theorem 4.14] φ : H/H ∩K → N is a smooth immersion. This shows
that φ is a smooth embedding.

In order to check that N is a totally geodesic submanifold we will show that its tangent
space amounts to a Lie triple system n ⊆ p. Let h = Lie(H) and g = Lie(G) with Cartan
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decomposition g = k ⊕ p. Define Θ|H := dσ|H : h → h. It is easy to check that the
corresponding Cartan decomposition is just h = k′⊕p′ with k′ := k∩h and p′ := p∩h. As
we know deπ

′ : p′ → ToH/H ∩K is an isomorphism as is doφ : ToH/H ∩K → ToN . By
commutativity of the above diagram ToN = deπ(n) where n = di(p′) ⊆ p. The subspace
n is a Lie triple system since di : h → g is a Lie algebra homomorphism

[[n, n], n] = [[di(p′), di(p′)], di(p′)] = di([[p′, p′], p′]) ⊆ di([k′, p′]) ⊆ di(p′) = n.

Thus N is a totally geodesic submanifold.

Exercise 3 (The symplectic group Sp(2n,R)). Let H = Sp(2n,R) = {g ∈ GL2n(R) : gtJg = J}
be the symplectic group, where

J =

(
0 In

−In 0

)
.

(a) Show that Sp(2n,R) ≤ SL(2n,R) =: G is a closed connected adjoint subgroup of G.

What can we deduce from exercise 2 about (H,H ∩K,σ|H)?

Solution. We will only show that Sp(2n,R) is adjoint. Let g ∈ Sp(2n,R). Note that
J−1 = −J = J t. Then

gtJg = J =⇒ gt = −Jg−1J

and thus
gJgt = gJ(−Jg−1J) = gg−1J = J

whence gt ∈ Sp(2n,R).
Now set K ′ := Sp(2n,R) ∩ SO(2n,R). By exercise 2 H/K ′ is again a symmetric space
and the inclusion H ↪→ SL(2n,R) descends to a smooth embedding with image a totally
geodesic submanifold of SL(2n,R)/ SO(2n,R).

(b) Denote by ω : R2n × R2n → R the standard symplectic form given by ω(x, y) = xtJy.

Show that B : R2n × R2n → R, (x, y) 7→ ω(Jx, y) is a symmetric positive definite bilinear
form.

Solution. Let x, y ∈ R2n. Then

B(x, y) = ω(Jx, y) = (Jx)tJy = −xtJ2y = xty = ⟨x, y⟩.

(c) An endomorphism M ∈ End(R2n) is called a complex structure if M2 = −Id. We say that M
is ω-compatible if (x, y) 7→ ω(Mx, y) is a symmetric positive definite bilinear form. Denote
the set of all ω-compatible complex structures by S2n.

Show that H = Sp(2n,R) acts on S2n via conjugation and deduce that there is a bijection
S2n

∼= H/H ∩K.
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Solution. Let M ∈ S2n and g ∈ Sp(2n,R). Then

(gMg−1)2 = gM2g−1 = −gg−1 = −Id.

If we denote by BM (x, y) = ω(Mx, y) the associated symmetric positive definite bilinear
form then

BgMg−1(x, y) = ω(gMg−1x, y) = ω(Mg−1x, g−1y)

= BM (g−1x, g−1y) = g∗BM (x, y)

for all x, y ∈ R2n, which is again a symmetric positive definite bilinear form.

Therefore, Sp(2n,R) acts via conjugation on S2n. By b) J is in S2n. Its stabilizer is
StabSp(2n,R)(J) = Sp(2n,R) ∩ SO(2n,R) = Sp(2n,R) ∩O(2n,R). Indeed

g ∈ StabSp(2n,R)(J) ⇐⇒ gJg−1 = J

ω non-deg.⇐⇒ ω(gJg−1x, y) = ω(Jx, y) ∀x, y ∈ R2n

⇐⇒ ω(Jg−1x, g−1y) = ω(Jx, y) ∀x, y ∈ R2n

ω(J·,·)=⟨·,·⟩⇐⇒ ⟨g−1x, g−1y⟩ = ⟨x, y⟩ ∀x, y ∈ R2n

⇐⇒ g ∈ Sp(2n,R) ∩O(2n,R).

Using symplectic linear algebra one can show that M is ω-compatible if and only if there
is a symplectic basis for R2n of the form

e′1, . . . , e
′
n, f

′
1 = Me′1, . . . , f

′
n = Me′n,

i.e. ω(e′i, e
′
j) = 0, ω(f ′

i , f
′
j) = 0, ω(e′i, f

′
j) = δij (see [?, Ex. 3, p. 73]). Now define

g : R2n → R2n,

ei 7→ e′i

fj 7→ f ′
j

by linear extension where {ei, fj = Jej} denotes the standard symplectic basis of R2n.
Since both {ei, fj} and {e′i, f ′

j} are symplectic bases the map g is a symplectomorphism

of (R2n, ω) onto itself, i.e. g ∈ Sp(2n,R). Further

Mg(ei) = Me′i = f ′
i = g(fi) = gJ(ei)

and
Mg(fj) = Mf ′

j = −e′j = −g(ej) = g(Jfj),

so that Mg = gJ , or equivalently M = gJg−1. That shows that the action is transitive.

Therefore
Sp(2n,R)/Sp(2n,R) ∩ SO(2n,R) ∼= S2n.
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