Symmetric Spaces

Exercise Sheet 3

Exercise 1. Consider $G = SO(1, n)^{\circ}$ with the involutive Lie group automorphism

$$\sigma: G \to G, g \mapsto J_n g J_n$$

where

$$J_n = \begin{pmatrix} -1 & 0\\ 0 & I_n \end{pmatrix} \in \mathrm{SO}(1, n).$$

Further let

$$K = \begin{pmatrix} 1 & 0\\ 0 & \mathrm{SO}(n) \end{pmatrix} \cong \mathrm{SO}(n).$$

It can be shown that (G, K, σ) is a Riemannian symmetric pair and that G/K is isometric to \mathbb{H}^n .

(a) Show that $\Theta = d\sigma : \mathfrak{g} \to \mathfrak{g}$ takes the form

$$\Theta(X) = \begin{pmatrix} 0 & -x^t \\ -x & D \end{pmatrix}$$

for all

$$X = \begin{pmatrix} 0 & x^t \\ x & D \end{pmatrix} \in \mathfrak{g} = \mathfrak{so}(1, n).$$

Deduce that

$$\mathfrak{p} = E_{-1}(\Theta) = \left\{ \begin{pmatrix} 0 & x^t \\ x & 0 \end{pmatrix} : x \in \mathbb{R}^n \right\},$$
$$\mathfrak{k} = E_1(\Theta) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} : D \in \mathfrak{so}(n) \right\} \cong \mathfrak{so}(n).$$

Solution. We compute

$$\Theta(X) = J_n X J_n = \begin{pmatrix} -1 & 0 \\ 0 & I_n \end{pmatrix} \begin{pmatrix} 0 & x^t \\ x & D \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & I_n \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -x^t \\ x & D \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & I_n \end{pmatrix} = \begin{pmatrix} 0 & -x^t \\ -x & D \end{pmatrix}$$

for all $X = \begin{pmatrix} 0 & x^t \\ x & D \end{pmatrix} \in \mathfrak{so}(1, n)$. Thus $\Theta(X) = -X$ implies D = 0, and likewise $\Theta(X) = X$ implies x = 0.

(b) Let $\pi : G \to G/K$ denote the usual quotient map and set $\overline{X} := d_e \pi(X) \in T_o(G/K)$ for all $X \in \mathfrak{g}$. Further let $\langle X, Y \rangle := \frac{1}{2} \operatorname{tr}(XY)$ for all $X, Y \in \mathfrak{p}$. Show that

$$R_o(\overline{X}, \overline{Y})\overline{Z} = \langle X, Z \rangle \overline{Y} - \langle Y, Z \rangle \overline{X}$$

for all $X, Y, Z \in \mathfrak{p}$. Deduce that G/K has constant sectional curvature -1.

<u>Hint:</u> You may use the following formula without proof:

The Riemann curvature tensor at $o \in M = G/K$ is given by

$$R_o(\overline{X}, \overline{Y})\overline{Z} = -\overline{[[X, Y], Z]}$$

for all $\overline{X}, \overline{Y}, \overline{Z} \in T_o M$.

Solution. Let

$$X = \begin{pmatrix} 0 & x^t \\ x & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & y^t \\ y & 0 \end{pmatrix}, Z = \begin{pmatrix} 0 & z^t \\ z & 0 \end{pmatrix} \in \mathfrak{p}.$$

Note that

$$\langle X, Y \rangle = \frac{1}{2} \operatorname{tr} \left(\begin{pmatrix} 0 & x^t \\ x & 0 \end{pmatrix} \begin{pmatrix} 0 & y^t \\ y & 0 \end{pmatrix} \right) = \frac{1}{2} \operatorname{tr} \begin{pmatrix} x^t y & 0 \\ 0 & x y^t \end{pmatrix} = \langle x, y \rangle,$$

where the latter is to be understood as the Euclidean inner product of the vectors $x, y \in \mathbb{R}^n$.

By the given formula we obtain

$$R_o(\overline{X}, \overline{Y})\overline{Z} = -\overline{[[X, Y], Z]}$$

First, we compute

$$\begin{split} [X,Y] &= \begin{pmatrix} 0 & x^t \\ x & 0 \end{pmatrix} \begin{pmatrix} 0 & y^t \\ y & 0 \end{pmatrix} - \begin{pmatrix} 0 & y^t \\ y & 0 \end{pmatrix} \begin{pmatrix} 0 & x^t \\ x & 0 \end{pmatrix} \\ &= \begin{pmatrix} x^t y & 0 \\ 0 & xy^t \end{pmatrix} - \begin{pmatrix} y^t x & 0 \\ 0 & yx^t \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & xy^t - yx^t \end{pmatrix}, \end{split}$$

and then

$$\begin{split} [[X,Y],Z] &= \begin{pmatrix} 0 & 0 \\ 0 & xy^t - yx^t \end{pmatrix} \begin{pmatrix} 0 & z^t \\ z & 0 \end{pmatrix} - \begin{pmatrix} 0 & z^t \\ z & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & xy^t - yx^t \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ (xy^t - yx^t)z & 0 \end{pmatrix} - \begin{pmatrix} 0 & z^t(xy^t - yx^t) \\ 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 0 & \langle y, z \rangle x^t - \langle x, z \rangle y^t \\ \langle y, z \rangle x - \langle x, z \rangle y & 0 \end{pmatrix} \\ &= \langle Y, Z \rangle X - \langle X, Z \rangle Y. \end{split}$$

This implies our claim.

As for the sectional curvature, let $V \subset \mathfrak{p}$ be a two-dimensional linear subspace and choose $X, Y \in \mathfrak{p}$ to be an orthonormal basis of V. Then

$$\kappa_o(\overline{V}) = R_o(\overline{X}, \overline{Y}, \overline{Y}, \overline{X}) = \langle R_o(\overline{X}, \overline{Y})\overline{Y}, \overline{X} \rangle = \langle \langle X, Y \rangle \overline{Y} - \langle Y, Y \rangle \overline{X}, \overline{X} \rangle = -1.$$

(c) Compute that

$$\exp\left(t \cdot \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\right) = \begin{pmatrix}\cosh t & \sinh t\\ \sinh t & \cosh t \end{pmatrix}$$

for all $t \in \mathbb{R}$.

Solution. Note that

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{2k} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{2k+1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

for all $k \in \mathbb{N}$. Thus

$$\exp\left(t \cdot \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\right) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}^n$$
$$= \sum_{k=0}^{\infty} \frac{t^{2k}}{2k!} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}^{2k} + \sum_{k=0}^{\infty} \frac{t^{2k+1}}{(2k+1)!} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}^{2k+1}$$
$$= \cosh t \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + \sinh t \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \cosh t & \sinh t\\ \sinh t & \cosh t \end{pmatrix}$$
for all $t \in \mathbb{R}$.

Exercise 2 (Closed adjoint subgroups of $\mathrm{SL}_n(\mathbb{R})$ and their symmetric spaces). Consider the Riemannian symmetric pair (G, K, σ) where $G = \mathrm{SL}_n(\mathbb{R})$, $K = \mathrm{SO}(n, \mathbb{R})$ and $\sigma : \mathrm{SL}_n(\mathbb{R}) \to \mathrm{SL}_n(\mathbb{R}), g \mapsto {}^t(g^{-1})$. Further let $H \leq G$ be a closed, connected subgroup that is adjoint, i.e. it is closed under transposition $h \mapsto {}^th$.

(a) Show that $(H, H \cap K, \sigma|_H)$ is again a Riemannian symmetric pair.

Solution. Note that $H = \sigma(\sigma(H)) \subseteq \sigma(H)$ since $\sigma : G \to G$ is an involutive Lie group automorphism. Because $H \leq G$ is a closed subgroup and hence an embedded submanifold σ restricts to an involutive Lie group automorphism $\sigma|_H : H \to H$.

Let us check that $(H^{\sigma})^{\circ} \subseteq H \cap K \subseteq H^{\sigma}$. Concerning the first inclusion note that $(H^{\sigma})^{\circ} \subseteq H^{\sigma} \subseteq G^{\sigma}$ whence $(H^{\sigma})^{\circ} \subseteq (G^{\sigma})^{\circ}$. Then the first inclusion follows from $(H^{\sigma})^{\circ} \subseteq H$ and $(G^{\sigma})^{\circ} \subseteq K$. The second inclusion follows easily from the fact that $H^{\sigma} = H \cap G^{\sigma}$ and $K \subseteq G^{\sigma}$.

Finally, $K = SO(n, \mathbb{R})$ is compact whence the intersection $H \cap K$ is also compact as is the image $Ad_H(H \cap K) \leq GL(\mathfrak{h})$.

(b) Show that $i: H \hookrightarrow G$ descends to a smooth embedding $\varphi: H/H \cap K \hookrightarrow G/K$ such that its image is a totally geodesic submanifold of G/K.

Solution. Denote by $\pi: G \to G/K$ and $\pi': H \to H/H \cap K$ the usual quotient maps. Define

$$\varphi: H/H \cap K \to G/K, \pi'(h) \mapsto \pi(i(h)).$$

That map is well-defined because

$$\pi'(h_1) = \pi'(h_2) \iff h_2^{-1}h_1 \in H \cap K$$
$$\iff i(h_2^{-1}h_1) \in K$$
$$\iff \pi(i(h_1)) = \pi(i(h_2))$$

for all $h_1, h_2 \in H$. This argument also shows that φ is injective whence it is a bijection onto its image $N := im\varphi$. We obtain the following commutative diagram.

Clearly, φ is continuous by the universal property of the quotient topology. We will now show that $\varphi : H/H \cap K \to N$ is proper, i.e. preimages of compact sets are compact. That will prove that φ is actually open onto its image because proper continuous maps are closed and continuous closed bijections are open. Let $C \subseteq N \subset G/K$ be compact. Because G is locally compact there is a compact set $C' \subseteq G$ such that $\pi(C') = C$ and

$$\pi^{-1}(C) = \pi^{-1}(\pi(C')) = \bigcup_{k \in K} C'k$$

is compact, i.e. π is proper. Further $i^{-1}(\pi^{-1}(C)) = H \cap \pi^{-1}(C)$ is compact since H is closed. Finally, $\varphi^{-1}(C) = \pi'(i^{-1}(\pi^{-1}(C)))$ is compact since π' is continuous. Therefore, $\varphi : H/H \cap K \to N$ is a homeomorphism.

Note that the smooth structure on $H/H \cap K$ is such that π' is a smooth submersion whence $\varphi : H/H \cap K \to G/K$ is smooth because $\pi \circ i : H \to G/K$ is smooth. Also, φ is equivariant with respect to the respective *H*-actions on $H/H \cap K$ and *N*. Because *H* acts transitively on $H/H \cap K$ it is easy to see that φ has constant rank. By the global rank theorem [?, Theorem 4.14] $\varphi : H/H \cap K \to N$ is a smooth immersion. This shows that φ is a smooth embedding.

In order to check that N is a totally geodesic submanifold we will show that its tangent space amounts to a Lie triple system $\mathfrak{n} \subseteq \mathfrak{p}$. Let $\mathfrak{h} = \text{Lie}(H)$ and $\mathfrak{g} = \text{Lie}(G)$ with Cartan

decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Define $\Theta|_H := d\sigma|_H : \mathfrak{h} \to \mathfrak{h}$. It is easy to check that the corresponding Cartan decomposition is just $\mathfrak{h} = \mathfrak{k}' \oplus \mathfrak{p}'$ with $\mathfrak{k}' := \mathfrak{k} \cap \mathfrak{h}$ and $\mathfrak{p}' := \mathfrak{p} \cap \mathfrak{h}$. As we know $d_e \pi' : \mathfrak{p}' \to T_o H/H \cap K$ is an isomorphism as is $d_o \varphi : T_o H/H \cap K \to T_o N$. By commutativity of the above diagram $T_o N = d_e \pi(\mathfrak{n})$ where $\mathfrak{n} = di(\mathfrak{p}') \subseteq \mathfrak{p}$. The subspace \mathfrak{n} is a Lie triple system since $di : \mathfrak{h} \to \mathfrak{g}$ is a Lie algebra homomorphism

$$[[\mathfrak{n},\mathfrak{n}],\mathfrak{n}] = [[di(\mathfrak{p}'), di(\mathfrak{p}')], di(\mathfrak{p}')] = di([[\mathfrak{p}',\mathfrak{p}'],\mathfrak{p}']) \subseteq di([\mathfrak{k}',\mathfrak{p}']) \subseteq di(\mathfrak{p}') = \mathfrak{n}.$$

Thus N is a totally geodesic submanifold.

Exercise 3 (The symplectic group $\operatorname{Sp}(2n, \mathbb{R})$). Let $H = \operatorname{Sp}(2n, \mathbb{R}) = \{g \in \operatorname{GL}_{2n}(\mathbb{R}) : g^t Jg = J\}$ be the symplectic group, where

$$J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}.$$

(a) Show that $\operatorname{Sp}(2n,\mathbb{R}) \leq \operatorname{SL}(2n,\mathbb{R}) =: G$ is a closed connected *adjoint* subgroup of G.

What can we deduce from exercise 2 about $(H, H \cap K, \sigma|_H)$?

Solution. We will only show that $\text{Sp}(2n, \mathbb{R})$ is adjoint. Let $g \in \text{Sp}(2n, \mathbb{R})$. Note that $J^{-1} = -J = J^t$. Then

$$g^t Jg = J \implies g^t = -Jg^{-1}J$$

and thus

$$gJg^t = gJ(-Jg^{-1}J) = gg^{-1}J = J$$

whence $g^t \in \text{Sp}(2n, \mathbb{R})$.

Now set $K' := \operatorname{Sp}(2n, \mathbb{R}) \cap \operatorname{SO}(2n, \mathbb{R})$. By exercise 2 H/K' is again a symmetric space and the inclusion $H \hookrightarrow \operatorname{SL}(2n, \mathbb{R})$ descends to a smooth embedding with image a totally geodesic submanifold of $\operatorname{SL}(2n, \mathbb{R})/\operatorname{SO}(2n, \mathbb{R})$.

(b) Denote by $\omega : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ the standard symplectic form given by $\omega(x, y) = x^t J y$. Show that $B : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}, (x, y) \mapsto \omega(Jx, y)$ is a symmetric positive definite bilinear form.

Solution. Let $x, y \in \mathbb{R}^{2n}$. Then

$$B(x,y) = \omega(Jx,y) = (Jx)^t Jy = -x^t J^2 y = x^t y = \langle x, y \rangle.$$

(c) An endomorphism $M \in \text{End}(\mathbb{R}^{2n})$ is called a complex structure if $M^2 = -\text{Id}$. We say that M is ω -compatible if $(x, y) \mapsto \omega(Mx, y)$ is a symmetric positive definite bilinear form. Denote the set of all ω -compatible complex structures by S_{2n} .

Show that $H = \operatorname{Sp}(2n, \mathbb{R})$ acts on S_{2n} via conjugation and deduce that there is a bijection $S_{2n} \cong H/H \cap K$.

Solution. Let $M \in S_{2n}$ and $g \in \text{Sp}(2n, \mathbb{R})$. Then

$$(gMg^{-1})^2 = gM^2g^{-1} = -gg^{-1} = -\mathrm{Id}.$$

If we denote by $B_M(x,y) = \omega(Mx,y)$ the associated symmetric positive definite bilinear form then

$$B_{gMg^{-1}}(x,y) = \omega(gMg^{-1}x,y) = \omega(Mg^{-1}x,g^{-1}y)$$

= $B_M(q^{-1}x,q^{-1}y) = q_*B_M(x,y)$

for all $x, y \in \mathbb{R}^{2n}$, which is again a symmetric positive definite bilinear form.

Therefore, $\operatorname{Sp}(2n, \mathbb{R})$ acts via conjugation on S_{2n} . By b) J is in S_{2n} . Its stabilizer is $\operatorname{Stab}_{\operatorname{Sp}(2n,\mathbb{R})}(J) = \operatorname{Sp}(2n,\mathbb{R}) \cap \operatorname{SO}(2n,\mathbb{R}) = \operatorname{Sp}(2n,\mathbb{R}) \cap O(2n,\mathbb{R})$. Indeed

$$g \in \operatorname{Stab}_{\operatorname{Sp}(2n,\mathbb{R})}(J) \iff gJg^{-1} = J$$

$$\overset{\omega \text{ non-deg.}}{\iff} \omega(gJg^{-1}x, y) = \omega(Jx, y) \quad \forall x, y \in \mathbb{R}^{2n}$$

$$\iff \omega(Jg^{-1}x, g^{-1}y) = \omega(Jx, y) \quad \forall x, y \in \mathbb{R}^{2n}$$

$$\overset{\omega(J, \cdot) = \langle \cdot, \cdot \rangle}{\iff} \langle g^{-1}x, g^{-1}y \rangle = \langle x, y \rangle \quad \forall x, y \in \mathbb{R}^{2n}$$

$$\iff q \in \operatorname{Sp}(2n, \mathbb{R}) \cap O(2n, \mathbb{R}).$$

Using symplectic linear algebra one can show that M is ω -compatible if and only if there is a symplectic basis for \mathbb{R}^{2n} of the form

$$e'_1, \dots, e'_n, f'_1 = Me'_1, \dots, f'_n = Me'_n,$$

i.e. $\omega(e'_i, e'_j) = 0, \omega(f'_i, f'_j) = 0, \omega(e'_i, f'_j) = \delta_{ij}$ (see [?, Ex. 3, p. 73]). Now define

g

$$: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$$
$$e_i \mapsto e'_i$$
$$f_j \mapsto f'_j$$

by linear extension where $\{e_i, f_j = Je_j\}$ denotes the standard symplectic basis of \mathbb{R}^{2n} . Since both $\{e_i, f_j\}$ and $\{e'_i, f'_j\}$ are symplectic bases the map g is a symplectomorphism of $(\mathbb{R}^{2n}, \omega)$ onto itself, i.e. $g \in \text{Sp}(2n, \mathbb{R})$. Further

$$Mg(e_i) = Me'_i = f'_i = g(f_i) = gJ(e_i)$$

and

$$Mg(f_j) = Mf'_j = -e'_j = -g(e_j) = g(Jf_j),$$

so that Mg = gJ, or equivalently $M = gJg^{-1}$. That shows that the action is transitive. Therefore

 $\operatorname{Sp}(2n,\mathbb{R})/\operatorname{Sp}(2n,\mathbb{R})\cap \operatorname{SO}(2n,\mathbb{R})\cong S_{2n}.$