Exercise Sheet 3

Exercise 1. Consider $G = SO(1, n)^\circ$ with the involutive Lie group automorphism

$$
\sigma: G \to G, g \mapsto J_n g J_n
$$

where

$$
J_n = \begin{pmatrix} -1 & 0 \\ 0 & I_n \end{pmatrix} \in SO(1, n).
$$

Further let

$$
K = \begin{pmatrix} 1 & 0 \\ 0 & \text{SO}(n) \end{pmatrix} \cong \text{SO}(n).
$$

It can be shown that (G, K, σ) is a Riemannian symmetric pair and that G/K is isometric to \mathbb{H}^n .

(a) Show that $\Theta = d\sigma : \mathfrak{g} \to \mathfrak{g}$ takes the form

$$
\Theta(X) = \begin{pmatrix} 0 & -x^t \\ -x & D \end{pmatrix}
$$

for all

$$
X = \begin{pmatrix} 0 & x^t \\ x & D \end{pmatrix} \in \mathfrak{g} = \mathfrak{so}(1, n).
$$

Deduce that

$$
\mathfrak{p} = E_{-1}(\Theta) = \left\{ \begin{pmatrix} 0 & x^t \\ x & 0 \end{pmatrix} : x \in \mathbb{R}^n \right\},\
$$

$$
\mathfrak{k} = E_1(\Theta) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} : D \in \mathfrak{so}(n) \right\} \cong \mathfrak{so}(n).
$$

(b) Let $\pi: G \to G/K$ denote the usual quotient map and set $\overline{X} := d_e \pi(X) \in T_o(G/K)$ for all $X \in \mathfrak{g}$. Further let $\langle X, Y \rangle := \frac{1}{2} \text{tr}(XY)$ for all $X, Y \in \mathfrak{p}$. Show that

$$
R_o(\overline{X}, \overline{Y})\overline{Z} = \langle X, Z \rangle \overline{Y} - \langle Y, Z \rangle \overline{X}
$$

for all $X, Y, Z \in \mathfrak{p}$. Deduce that G/K has constant sectional curvature -1 .

Hint: You may use the following formula without proof:

The Riemann curvature tensor at $o \in M = G/K$ is given by

$$
R_o(\overline{X}, \overline{Y})\overline{Z} = -[[X, Y], Z]
$$

for all $\overline{X}, \overline{Y}, \overline{Z} \in T_oM$.

(c) Compute that

$$
\exp\left(t \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}
$$

for all $t \in \mathbb{R}$.

Exercise 2 (Closed adjoint subgroups of $SL_n(\mathbb{R})$ and their symmetric spaces). Consider the Riemannian symmetric pair (G, K, σ) where $G = SL_n(\mathbb{R})$, $K = SO(n, \mathbb{R})$ and $\sigma : SL_n(\mathbb{R}) \to$ $SL_n(\mathbb{R}), g \mapsto {}^t(g^{-1})$. Further let $H \leq G$ be a closed, connected subgroup that is adjoint, i.e. it is closed under transposition $h \mapsto {}^t h$.

- (a) Show that $(H, H \cap K, \sigma|_H)$ is again a Riemannian symmetric pair.
- (b) Show that $i : H \hookrightarrow G$ descends to a smooth embedding $\varphi : H/H \cap K \hookrightarrow G/K$ such that its image is a totally geodesic submanifold of G/K .

Exercise 3 (The symplectic group $Sp(2n, \mathbb{R})$). Let $H = Sp(2n, \mathbb{R}) = \{g \in GL_{2n}(\mathbb{R}) : g^t J g = J\}$ be the symplectic group, where

$$
J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}.
$$

- (a) Show that $Sp(2n, \mathbb{R}) \le SL(2n, \mathbb{R}) =: G$ is a closed connected *adjoint* subgroup of G. What can we deduce from exercise 2 about $(H, H \cap K, \sigma|_H)$?
- (b) Denote by $\omega : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ the standard symplectic form given by $\omega(x, y) = x^t J y$. Show that $B: \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}, (x, y) \mapsto \omega(Jx, y)$ is a symmetric positive definite bilinear form.
- (c) An endomorphism $M \in \text{End}(\mathbb{R}^{2n})$ is called a complex structure if $M^2 = -\text{Id}$. We say that M is ω -compatible if $(x, y) \mapsto \omega(Mx, y)$ is a symmetric positive definite bilinear form. Denote the set of all ω -compatible complex structures by S_{2n} .

Show that $H = Sp(2n, \mathbb{R})$ acts on S_{2n} via conjugation and deduce that there is a bijection $S_{2n} \cong H/H \cap K.$