Prof. Dr. A. Tozzi Symmetric Spaces HS 2024

Exercise Sheet 4

Part of the first exercise is to complete the proof of Theorem I1.29. The numbering matches that of
the lectures — be warned, it might differ slightly in the notes. Exercises 2 and 8 rely on material
that you will see on Wednesday 06 November, or the week after.

Exercise 1 (Theorem II.29 - Decomposition of OSLA). Let (g,©) be an effective orthogonal
symmetric Lie-algebra. We have the Cartan decomposition g = u @ ¢. We decomposed ¢ =
¢o D e @ e_ and defined uy = [eq,eq] and u_ = [e_,e_]. ug is defined to be the orthogonal
complement of uy @ u_ in u.

(a) Find an OSLA (g, ©), such that eg = 0, but ug # 0.

Solution. The idea is to have a large u and a small e. This means that © should fix lots
of points. For example one can take g = s[(2,R) x 50(3) and define © = G2 r) X Idsa(3),
where O42r) = De o (for o(g) ='g') is the usual Cartan involution on sl(2,R). Then
u=FE0O =¢txs03) and e = E_;0 = p x 0, where s[(2,R) = £ ® p is the Cartan
decomposition of s[(2,R).

We need to check that (g,0) is an orthogonal symmetric Lie-algebra (OSLA): © is an
involutive automorphism (since ©42,r) and Id,a(3) are) and we also have © # Idy. The
definition of OSLA requires u to be compactly-embedded in g, that is adg(u) needs to
be the Lie algebra of a compact subgroup of GL(g). This is true since ¢ x s0(3) is the
lie algebra of the compact group SO(2) x SO(3) < SL(2,R) x SO(3) < GL(g). Note
that we were forced to take the Lie-algebra of a compact group as the second factor
(sl(2,R) x sl(2,R) would not have worked, but s0(3) x s0(3) would have).

Now one can calculate the Killing form, which turns out to be

-8 0 0
0 8 0 0
0 0 8
A= -2 0 0
0 0 -2 0
0 0 -2




in the basis

(029 (6 )9 o= )

0 0 0 0 1 0
€4 = 0, 0 -1 , €5 = O, 0 0 0 , €6 = O7 1

0 0 -1 0 0 0
of g =tx0®px0B0x50(3) = (e1)D ez, e3) B (eu, €5, €g). The first factor (= Killing form
of s[(2,R)) can be quite quickly computed by hand. As for the second factor (= Killing
form of s0(3)), one can notice that so(3) is the Lie algebra of a compact semisimple group
and hence its Killing form is negative definite.

Since ¢ = p x 0 = (eq,e3) x 0, we see that (cf. definition of ¢, e, e_ in the proof of
Theorem 11.29)

eo=0x0, e_=px0, ex=0x0.
Therefore

u_=Je_,e | =€x0, up=/[er,er]=0.

The remaining orthogonal complement in u is ug = 0 X s0(3) # 0. So we have found a
OSLA with ¢y = 0 and ug # 0.

The Lie algebra g = ug ® u_ @ e_ is of non-compact type.

(b) Complete the proof of Lemma I1.31 (3): that is, show that [us,e] = [ug,es] = (0).

Hint: use Lemma 11.30.

Solution. See lemma I1.33 in the notes.

(¢) Prove Corollary I1.32: show that u; ®e., € € {—1,0,+1}, are pairwise orthogonal ideals in g

(with respect to By).

Solution. See corollary I1.34 in the notes.

Let n < g be an ideal of a Lie-algebra g. Prove that B, = Bg|nxn.

Solution. Let us write a basis e1,...,en,€n41,...,6mn of g, where ey, ...e, is a basis of
n. Since n is an ideal, for X € n,Y € g, we have [X,Y] € n. Therefore ady(X) is of the

form ady(X) = (adnéX) 3)




and so for X, Y € n we have

By(X,Y) = tr(adg(X) o adg(Y))
_ adp(X)oad,(Y) =
- ( 0 0)
= tr(ad,(X) o ad,(Y))
= Ba(X,Y).

(e) Find an example of a subalgebra n C g, such that By, # Bg|nxn.

Solution. We consider the Cartan-decomposition g = s[(2,R) = ¢ ® p and set n := &.
We know that ¢ is a subalgebra of g. Taking the basis

/0 -1 /1 0 (0 1
“e=\1 o) 27\o 1) 71 o)

we get
0 0 O
adg(er)= (0 0 -2
0 2 0
LetX:)\l‘el,Y:)\Q'BlEﬂ:<61>. Then
0 O 0
BE(X,Y):tr(adg(X)oadg(X)):)\1-)\2~tr 0 —4 0 :—8')\1'>\2,
0O 0 -4

but
Bn(X,Y) =tr(ady(X) ocad, (X)) =tr(0-0) =0

since ad,(X) = 0 because [e1,e1] = 0.

(f) Let g = g1 ® g2 be a direct sum of two ideals g; and go. Further let ¢; and €5 be subalgebras of
g1 and go. Show that € + €5 is compactly embedded in g if and only if ¢; and &5 is compactly
embedded in g; and gs.

This implies that ug, u_,u; are compactly embedded in gg,g— and g.

Hint: For connected G and K < G, there is an isomorphism
K/(K N Z(G)) = Adg(K)
(compare Ex Sheet 2, exercise 5(b)). Use Lie(Adg(K)) = adye(q)(Lie(K)).

Solution. By Lie’s third theorem there exist connected (and simply connected) Lie
groups G and Gy with Lie(G1) = g1 and Lie(G3) = g2. The Lie group G := G x Gs
satisfies Lie(G) = g1 X go. Since & and € are Lie-subalgebras, there exist K; and



Exercise 2 (Theorem I1.34 - Decomposition of simply connected RSS).
two normal subgroups. Show that [N, H] C NN H.

K, Lie-subgroups of G; and Gy with Lie(K;) = ¢ and Lie(K3) = ;. We also have
K = Kl X K2 with Lle(K) = E]_ X EQ.

Now we have the center Z(G) = Z(G1) x Z(G2) and
Z(G) NK = (Z(G1) X Z(Gg)) N (Kl X KQ) = (Z(G1) ﬂKl) X (Z(GQ) ng),

Ado(K) = K/(2(G) N K)
= (K1 x K3)/(Z(G1) N K1 x Z(Ga) N K)
= K1/(Z(G1) N Ky) x K»/(Z(G2) N K>)
= Adg, (K1) x Adg, (K2).

Now adg (81 + £2),adg, (81) and adg,(£2) are the Lie-algebras of the groups Adqg(K),
AdG1 (Kl) and AdG2 (KQ)

So £; + €5 is compactly embedded in g by definition if and only if Ad(K) is compact
which is equivalent to saying Adeg, (K1) and Adg, (K2) are compact, i.e. both ¢; and £
are compactly embedded in g; resp. go.

(a) Let HLN < G be

Solution. Let nhn='h~! € [N, H|, then (nhn')h~t € Hh~!' € H and n(hn~'h™1) €
nN C N. Sonhn='h=t € HN N.

Let H, N < G be connected subgroups. Show that [N, H] is a connected subgroup of G.

Solution. The map [-,-]: N x H — G is continuous, since it is a composition of multi-
plications. The image of connected sets under a continuous map is connected.

(c) Let M be a simply connected Riemannian symmetric space. Then g = Lie(Iso(M)®)
g0 @ g+ @ g—. We get corresponding Lie-subgroups Go, G4, G- and their universal covers
Go,G4+,G_. Let Ky, Ky, K_ be the Lie-subgroups associated to tg, ¢, ,¢_, which come from

the Cartan-decomposition of gg, g+, g—.
Show that (Go, Ko), (G, Ky) and (G_, K_) are Riemannian symmetric pairs.

Solution. Let p € {0,4,—}. The éu can be assumed to be connected.One can show
that 1;|KofoxK+ : Ko x K_ x Ky — p~}(K) is a homeomorphism. The product of
sets is closed if and only if all the factors are closed, so K, are closed subgroups of G
and therefore also of é;r Since ¢, are compactly embedded, we get that AdéM(K ) are
compact.

By the Lie-group-correspondence, since G is simply connected we get o: G — G a
unique Lie-group automorphism, such that D, o = ©. Now (using the pullback of the
isomorphism 1), we can restrict o to ,,: G, = G,,. Since ©,: g, — g, is an involution,




so is 0, (they are not the identity).

It remains to show that (G3*)° € K, C Gp. Let X € £,. Then exp(X) € G,,. We have
that o, (exp(X)) = exp(0,X) = exp(X). So for all g € K, in a small neighborhood of e,
we have 0,,(g) = g. Since a neighborhood generates the connected group K, we can write
elements g € K, as a product g = g1 -...- g, and we get 0,(9) =0,(g1) ... -0.(gn) = 9.
So K, C G

Now we consider a neighbourhood V C exp(g,) of e of G,,. Let exp(tX) € VN (Gy*)° for
t € (—¢,e). Then exp(tX) = g, (exp(tX)) = exp(t©, (X)), so (taking the derivative) we
get X = 0,(X), i.e. X €¢, and thus VN (Gp*)° C K,,. Now since (G )° is connected,
the elements are generated by elements in K, i.e. (Gom)° K,.

We conclude that (G, K,) are Riemannian symmetric pairs for {0, —, +}.

Exercise 3 (Complexification and Killing form). Let [y be a Lie algebra over R and let [ be the
complexification of ly. Let Ky, K and K® denote the Killing forms of the Lie algebras I, [ and (&,
respectively. Show that:

(a) Ko(X,Y)=K(X,Y) for all XY € lp;
(b) KE(X,Y) =2 -R(K(X,Y)) for all X,Y € K.

Solution. The first relation is obvious. For the second let B:= {X; :i=1,...,n} be a
basis of [. Let X,Y € [. Then we may write

ad(X)ad(Y)(Xz):Zn:aZ]Xj, 221,,71, (1)

for some complex numbers a;; = Bi; +i-v; € C. Denote by A, B,C the n x n-
matrices with entries «j, B:j5, vij, respectively. Then A is the matrix representation of
ad(X) ad(Y’) with respect to the basis B,

Mp(ad(X)ad(Y)) = A=B+iC
and B, C are the real, imaginary parts of A. Now, consider the basis
C={X1,...,X,,iXy,...,iX,}

of R, Then

n

ad(X) ad(Y)('LXz) :Z_’Yij'Xj-‘rZﬁij'(in), 1=1,...,n, (2)

j=1 j=1

and with (1) we obtain that the matrix representation of ad(X)ad(Y) with respect to




the basis C is given by

A= Mc(ad(X) ad(Y)) = (g _BC> :

Thus
2-RK(X,Y) = 2R(trAd) = 2B = trA’ = K*(X,Y).

Exercise 4 (Exceptional isogeny of SL(2, C) and SO(3,1)). Let J = (9 ;') and consider the vector
space
V ={r€ My(C) | 2* = JaJ '}

(where x* denotes conjugate-transpose), endowed with the R-bilinear R-valued bilinear form
{z,y) := Re(Tr(27)))
(where 7 denotes componentwise conjugation).

Consider the G = SL(2, C) action on V given by g -z := gzg !, and use this to obtain an isogeny
SL(2,C) — SO(3,1) (that is, show this gives a surjective homomorphism with finite kernel).

Solution. Note that we can also write

V= {:CGMQ((C)H:: ( f) whereaG(C,b,ce]R}

An orthogonal basis is given by

1 0 1 0 0 1 0 3
0 1)’ 0 —i)’ i 0)’ —i 0
Under (-, ) these have values —2, 2,2, 2 respectively and so the signature is (3, 1).

The G-action preserves (-,-) on M>(C), since

Tr(gzg 'gyg ') = Tr(gzg 'gyg ") = Tr(gayg ') = Tr(z7)

Note that G stabilises V: indeed for g € SL(2,C) we have g~! = JgtJ !, and so for y € V we
have

(gyg~ ") =@ )'y'g = (¢") "y g = (J(g")' T ) (JyI ) (Jg~ T
=JgJ 'y (g I = J(gyg )T

Hence G stabilises V' and maps to a copy of SO(3, 1), with kernel {+1d}.




