Exercise Sheet 4

Part of the first exercise is to complete the proof of Theorem II.29. The numbering matches that of the lectures — be warned, it might differ slightly in the notes. Exercises 2 and 3 rely on material that you will see on Wednesday 06 November, or the week after.

Exercise 1 (Theorem II.29 - Decomposition of OSLA). Let (\mathfrak{g}, Θ) be an effective orthogonal symmetric Lie-algebra. We have the Cartan decomposition $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{e}$. We decomposed $\mathfrak{e} = \mathfrak{e}_0 \oplus \mathfrak{e}_+ \oplus \mathfrak{e}_-$ and defined $\mathfrak{u}_+ = [\mathfrak{e}_+, \mathfrak{e}_+]$ and $\mathfrak{u}_- = [\mathfrak{e}_-, \mathfrak{e}_-]$. \mathfrak{u}_0 is defined to be the orthogonal complement of $\mathfrak{u}_+ \oplus \mathfrak{u}_-$ in \mathfrak{u} .

(a) Find an OSLA (\mathfrak{g}, Θ) , such that $\mathfrak{e}_0 = 0$, but $\mathfrak{u}_0 \neq 0$.

Solution. The idea is to have a large \mathfrak{u} and a small \mathfrak{e} . This means that Θ should fix lots of points. For example one can take $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{so}(3)$ and define $\Theta = \Theta_{\mathfrak{sl}(2,\mathbb{R})} \times \mathrm{Id}_{\mathfrak{so}(3)}$, where $\Theta_{\mathfrak{sl}(2,\mathbb{R})} = \mathrm{D}_e \sigma$ (for $\sigma(g) = {}^tg^{-1}$) is the usual Cartan involution on $\mathfrak{sl}(2,\mathbb{R})$. Then $\mathfrak{u} = E_1 \Theta = \mathfrak{k} \times \mathfrak{so}(3)$ and $\mathfrak{e} = E_{-1} \Theta = \mathfrak{p} \times 0$, where $\mathfrak{sl}(2,\mathbb{R}) = \mathfrak{k} \oplus \mathfrak{p}$ is the Cartan decomposition of $\mathfrak{sl}(2,\mathbb{R})$.

We need to check that (\mathfrak{g}, Θ) is an orthogonal symmetric Lie-algebra (OSLA): Θ is an involutive automorphism (since $\Theta_{\mathfrak{sl}(2,\mathbb{R})}$ and $\mathrm{Id}_{\mathfrak{so}(3)}$ are) and we also have $\Theta \neq \mathrm{Id}_{\mathfrak{g}}$. The definition of OSLA requires \mathfrak{u} to be compactly-embedded in \mathfrak{g} , that is $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{u})$ needs to be the Lie algebra of a compact subgroup of $\mathrm{GL}(\mathfrak{g})$. This is true since $\mathfrak{k} \times \mathfrak{so}(3)$ is the lie algebra of the compact group $\mathrm{SO}(2) \times \mathrm{SO}(3) < \mathrm{SL}(2,\mathbb{R}) \times \mathrm{SO}(3) < \mathrm{GL}(\mathfrak{g})$. Note that we were forced to take the Lie-algebra of a compact group as the second factor $(\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{sl}(2,\mathbb{R}) \text{ would not have worked, but } \mathfrak{so}(3) \times \mathfrak{so}(3) \text{ would have}).$

Now one can calculate the Killing form, which turns out to be

$$A = \begin{pmatrix} -8 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & \\ & & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ & & 0 & 0 & -2 \end{pmatrix}$$

in the basis

$$e_{1} = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, 0 \right), \quad e_{2} = \left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, 0 \right), \quad e_{3} = \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, 0 \right)$$
$$e_{4} = \left(0, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \right), e_{5} = \left(0, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \right), e_{6} = \left(0, \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right)$$

of $\mathfrak{g} = \mathfrak{k} \times 0 \oplus \mathfrak{p} \times 0 \oplus 0 \times \mathfrak{so}(3) = \langle e_1 \rangle \oplus \langle e_2, e_3 \rangle \oplus \langle e_4, e_5, e_6 \rangle$. The first factor (= Killing form of $\mathfrak{sl}(2,\mathbb{R})$) can be quite quickly computed by hand. As for the second factor (= Killing form of $\mathfrak{so}(3)$), one can notice that $\mathfrak{so}(3)$ is the Lie algebra of a compact semisimple group and hence its Killing form is negative definite.

Since $\mathfrak{e} = \mathfrak{p} \times 0 = \langle e_2, e_3 \rangle \times 0$, we see that (cf. definition of $\mathfrak{e}_0, \mathfrak{e}_+, \mathfrak{e}_-$ in the proof of Theorem II.29)

$$\mathfrak{e}_0 = 0 \times 0, \quad \mathfrak{e}_- = \mathfrak{p} \times 0, \quad \mathfrak{e}_+ = 0 \times 0.$$

Therefore

$$\mathfrak{u}_{-} = [\mathfrak{e}_{-}, \mathfrak{e}_{-}] = \mathfrak{k} \times 0, \quad u_{+} = [\mathfrak{e}_{+}, \mathfrak{e}_{+}] = 0.$$

The remaining orthogonal complement in \mathfrak{u} is $\mathfrak{u}_0 = 0 \times \mathfrak{so}(3) \neq 0$. So we have found a OSLA with $\mathfrak{e}_0 = 0$ and $\mathfrak{u}_0 \neq 0$.

The Lie algebra $\mathfrak{g} = \mathfrak{u}_0 \oplus \mathfrak{u}_- \oplus \mathfrak{e}_-$ is of non-compact type.

(b) Complete the proof of Lemma II.31 (3): that is, show that [\$\mu_{\pi}\$, \$\mathcal{e}_0\$] = [\$\mu_{\pi}\$, \$\mathcal{e}_{\pi}\$] = (0). Hint: use Lemma II.30.

Solution. See lemma II.33 in the notes.

(c) Prove Corollary II.32: show that u_ε ⊕ e_ε, ε ∈ {−1, 0, +1}, are pairwise orthogonal ideals in g (with respect to B_g).

Solution. See corollary II.34 in the notes.

(d) Let $\mathfrak{n} \triangleleft \mathfrak{g}$ be an ideal of a Lie-algebra \mathfrak{g} . Prove that $B_{\mathfrak{n}} = B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.

Solution. Let us write a basis $e_1, \ldots, e_n, e_{n+1}, \ldots, e_m$ of \mathfrak{g} , where e_1, \ldots, e_n is a basis of \mathfrak{n} . Since \mathfrak{n} is an ideal, for $X \in \mathfrak{n}, Y \in \mathfrak{g}$, we have $[X, Y] \in \mathfrak{n}$. Therefore $\mathrm{ad}_{\mathfrak{g}}(X)$ is of the form $(\mathrm{ad}_{\mathfrak{g}}(X) \ast)$

$$\mathrm{ad}_{\mathfrak{g}}(X) = \begin{pmatrix} \mathrm{ad}_{\mathfrak{n}}(X) & * \\ 0 & 0 \end{pmatrix}$$

and so for $X, Y \in \mathfrak{n}$ we have

$$B_{\mathfrak{g}}(X,Y) = \operatorname{tr}(\operatorname{ad}_{\mathfrak{g}}(X) \circ \operatorname{ad}_{\mathfrak{g}}(Y))$$
$$= \operatorname{tr}\begin{pmatrix} \operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(Y) & *\\ 0 & 0 \end{pmatrix}$$
$$= \operatorname{tr}(\operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(Y))$$
$$= B_{\mathfrak{n}}(X,Y).$$

(e) Find an example of a subalgebra $\mathfrak{n} \subset \mathfrak{g}$, such that $B_{\mathfrak{n}} \neq B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.

Solution. We consider the Cartan-decomposition $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R}) = \mathfrak{k} \oplus \mathfrak{p}$ and set $\mathfrak{n} := \mathfrak{k}$. We know that \mathfrak{k} is a subalgebra of \mathfrak{g} . Taking the basis

$$e_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

we get

$$\operatorname{ad}_{\mathfrak{g}}(e_1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{pmatrix}$$

Let $X = \lambda_1 \cdot e_1, Y = \lambda_2 \cdot e_1 \in \mathfrak{n} = \langle e_1 \rangle$. Then

$$B_{\mathfrak{g}}(X,Y) = \operatorname{tr}(\operatorname{ad}_{\mathfrak{g}}(X) \circ \operatorname{ad}_{\mathfrak{g}}(X)) = \lambda_1 \cdot \lambda_2 \cdot \operatorname{tr} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{pmatrix} = -8 \cdot \lambda_1 \cdot \lambda_2,$$

but

$$B_{\mathfrak{n}}(X,Y) = \operatorname{tr}(\operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(X)) = \operatorname{tr}(0 \cdot 0) = 0$$

since $\operatorname{ad}_{\mathfrak{n}}(X) = 0$ because $[e_1, e_1] = 0$.

(f) Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ be a direct sum of two ideals \mathfrak{g}_1 and \mathfrak{g}_2 . Further let \mathfrak{k}_1 and \mathfrak{k}_2 be subalgebras of \mathfrak{g}_1 and \mathfrak{g}_2 . Show that $\mathfrak{k}_1 + \mathfrak{k}_2$ is compactly embedded in \mathfrak{g} if and only if \mathfrak{k}_1 and \mathfrak{k}_2 is compactly embedded in \mathfrak{g}_1 and \mathfrak{g}_2 .

This implies that $\mathfrak{u}_0, \mathfrak{u}_-, \mathfrak{u}_+$ are compactly embedded in $\mathfrak{g}_0, \mathfrak{g}_-$ and \mathfrak{g}_+ .

Hint: For connected G and K < G, there is an isomorphism

$$K/(K \cap Z(G)) \cong \operatorname{Ad}_G(K)$$

(compare Ex Sheet 2, exercise 5(b)). Use $\operatorname{Lie}(\operatorname{Ad}_G(K)) = \operatorname{ad}_{\operatorname{Lie}(G)}(\operatorname{Lie}(K))$.

Solution. By Lie's third theorem there exist connected (and simply connected) Lie groups G_1 and G_2 with $\text{Lie}(G_1) = \mathfrak{g}_1$ and $\text{Lie}(G_2) = \mathfrak{g}_2$. The Lie group $G := G_1 \times G_2$ satisfies $\text{Lie}(G) = \mathfrak{g}_1 \times \mathfrak{g}_2$. Since \mathfrak{k}_1 and \mathfrak{k}_2 are Lie-subalgebras, there exist K_1 and

 K_2 Lie-subgroups of G_1 and G_2 with $\text{Lie}(K_1) = \mathfrak{k}_1$ and $\text{Lie}(K_2) = \mathfrak{k}_2$. We also have $K := K_1 \times K_2$ with $\text{Lie}(K) = \mathfrak{k}_1 \times \mathfrak{k}_2$.

Now we have the center $Z(G) = Z(G_1) \times Z(G_2)$ and

$$Z(G) \cap K = (Z(G_1) \times Z(G_2)) \cap (K_1 \times K_2) = (Z(G_1) \cap K_1) \times (Z(G_2) \cap K_2),$$

 \mathbf{SO}

$$Ad_{G}(K) = K/(Z(G) \cap K)$$

= $(K_{1} \times K_{2})/(Z(G_{1}) \cap K_{1} \times Z(G_{2}) \cap K_{2})$
= $K_{1}/(Z(G_{1}) \cap K_{1}) \times K_{2}/(Z(G_{2}) \cap K_{2})$
= $Ad_{G_{1}}(K_{1}) \times Ad_{G_{2}}(K_{2}).$

Now $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{k}_1 + \mathfrak{k}_2)$, $\operatorname{ad}_{\mathfrak{g}_1}(\mathfrak{k}_1)$ and $\operatorname{ad}_{\mathfrak{g}_2}(\mathfrak{k}_2)$ are the Lie-algebras of the groups $\operatorname{Ad}_G(K)$, $\operatorname{Ad}_{G_1}(K_1)$ and $\operatorname{Ad}_{G_2}(K_2)$.

So $\mathfrak{k}_1 + \mathfrak{k}_2$ is compactly embedded in \mathfrak{g} by definition if and only if $\operatorname{Ad}(K)$ is compact which is equivalent to saying $\operatorname{Ad}_{G_1}(K_1)$ and $\operatorname{Ad}_{G_2}(K_2)$ are compact, i.e. both \mathfrak{k}_1 and \mathfrak{k}_2 are compactly embedded in \mathfrak{g}_1 resp. \mathfrak{g}_2 .

Exercise 2 (Theorem II.34 - Decomposition of simply connected RSS). (a) Let $H, N \triangleleft G$ be two normal subgroups. Show that $[N, H] \subset N \cap H$.

Solution. Let $nhn^{-1}h^{-1} \in [N, H]$, then $(nhn^1)h^{-1} \in Hh^{-1} \subset H$ and $n(hn^{-1}h^{-1}) \in nN \subset N$. So $nhn^{-1}h^{-1} \in H \cap N$.

(b) Let H, N < G be connected subgroups. Show that [N, H] is a connected subgroup of G.

Solution. The map $[\cdot, \cdot]: N \times H \to G$ is continuous, since it is a composition of multiplications. The image of connected sets under a continuous map is connected.

(c) Let M be a simply connected Riemannian symmetric space. Then $\mathfrak{g} = \text{Lie}(\text{Iso}(M)^\circ) = \mathfrak{g}_0 \oplus \mathfrak{g}_+ \oplus \mathfrak{g}_-$. We get corresponding Lie-subgroups G_0, G_+, G_- and their universal covers $\tilde{G}_0, \tilde{G}_+, \tilde{G}_-$. Let K_0, K_+, K_- be the Lie-subgroups associated to $\mathfrak{k}_0, \mathfrak{k}_+, \mathfrak{k}_-$, which come from the Cartan-decomposition of $\mathfrak{g}_0, \mathfrak{g}_+, \mathfrak{g}_-$.

Show that $(\hat{G}_0, K_0), (\hat{G}_+, K_+)$ and (\hat{G}_-, K_-) are Riemannian symmetric pairs.

Solution. Let $\mu \in \{0, +, -\}$. The \tilde{G}_{μ} can be assumed to be connected. One can show that $\tilde{\psi}|_{K_0 \times K_- \times K_+} : K_0 \times K_- \times K_+ \to p^{-1}(K)$ is a homeomorphism. The product of sets is closed if and only if all the factors are closed, so K_{μ} are closed subgroups of \tilde{G} and therefore also of \tilde{G}_{μ} . Since \mathfrak{t}_{μ} are compactly embedded, we get that $\operatorname{Ad}_{\tilde{G}_{\mu}}(K_{\mu})$ are compact.

By the Lie-group-correspondence, since \tilde{G} is simply connected we get $\sigma \colon \tilde{G} \to \tilde{G}$ a unique Lie-group automorphism, such that $D_e \sigma = \Theta$. Now (using the pullback of the isomorphism ψ), we can restrict σ to $\sigma_{\mu} \colon \tilde{G}_{\mu} \to \tilde{G}_{\mu}$. Since $\Theta_{\mu} \colon \mathfrak{g}_{\mu} \to \mathfrak{g}_{\mu}$ is an involution,

so is σ_{μ} (they are not the identity).

It remains to show that $(\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ} \subset K_{\mu} \subset \tilde{G}_{\mu}^{\sigma_{\mu}}$. Let $X \in \mathfrak{k}_{\mu}$. Then $\exp(X) \in \tilde{G}_{\mu}$. We have that $\sigma_{\mu}(\exp(X)) = \exp(\Theta_{\mu}X) = \exp(X)$. So for all $g \in K_{\mu}$ in a small neighborhood of e, we have $\sigma_{\mu}(g) = g$. Since a neighborhood generates the connected group K_{μ} , we can write elements $g \in K_{\mu}$ as a product $g = g_1 \cdot \ldots \cdot g_n$ and we get $\sigma_{\mu}(g) = \sigma_{\mu}(g_1) \cdot \ldots \cdot \sigma_{\mu}(g_n) = g$. So $K_{\mu} \subset \tilde{G}_{\mu}^{\sigma_{\mu}}$. Now we consider a neighbourhood $V \subset \exp(\mathfrak{g}_{\mu})$ of e of \tilde{G}_{μ} . Let $\exp(tX) \in V \cap (\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ}$ for $t \in (-\varepsilon, \varepsilon)$. Then $\exp(tX) = \sigma_{\mu}(\exp(tX)) = \exp(t\Theta_{\mu}(X))$, so (taking the derivative) we

get $X = \Theta_{\mu}(X)$, i.e. $X \in \mathfrak{k}_{\mu}$ and thus $V \cap (\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ} \subset K_{\mu}$. Now since $(\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ}$ is connected, the elements are generated by elements in K_{μ} , i.e. $(\tilde{G}_{\mu}^{\sigma_{\mu}})^{\circ} \subset K_{\mu}$.

We conclude that $(\tilde{G}_{\mu}, K_{\mu})$ are Riemannian symmetric pairs for $\{0, -, +\}$.

Exercise 3 (Complexification and Killing form). Let \mathfrak{l}_0 be a Lie algebra over \mathbb{R} and let \mathfrak{l} be the complexification of \mathfrak{l}_0 . Let K_0, K and $K^{\mathbb{R}}$ denote the Killing forms of the Lie algebras $\mathfrak{l}, \mathfrak{l}_0$ and $\mathfrak{l}^{\mathbb{R}}$, respectively. Show that:

- (a) $K_0(X,Y) = K(X,Y)$ for all $X,Y \in \mathfrak{l}_0$;
- (b) $K^{\mathbb{R}}(X,Y) = 2 \cdot \Re(K(X,Y))$ for all $X, Y \in \mathfrak{l}^{\mathbb{R}}$.

Solution. The first relation is obvious. For the second let $\mathcal{B} := \{X_i : i = 1, ..., n\}$ be a basis of \mathfrak{l} . Let $X, Y \in \mathfrak{l}$. Then we may write

$$\operatorname{ad}(X)\operatorname{ad}(Y)(X_i) = \sum_{j=1}^n \alpha_{ij} \cdot X_j, \qquad i = 1, \dots, n,$$
(1)

for some complex numbers $\alpha_{ij} = \beta_{ij} + i \cdot \gamma_{ij} \in \mathbb{C}$. Denote by A, B, C the $n \times n$ matrices with entries $\alpha_{ij}, \beta_{ij}, \gamma_{ij}$, respectively. Then A is the matrix representation of $\operatorname{ad}(X) \operatorname{ad}(Y)$ with respect to the basis \mathcal{B} ,

$$M_{\mathcal{B}}(\mathrm{ad}(X) \mathrm{ad}(Y)) = A = B + iC$$

and B, C are the real, imaginary parts of A. Now, consider the basis

$$\mathcal{C} = \{X_1, \dots, X_n, iX_1, \dots, iX_n\}$$

of $\mathfrak{l}^{\mathbb{R}}$. Then

$$ad(X) ad(Y)(iX_i) = \sum_{j=1}^n -\gamma_{ij} \cdot X_j + \sum_{j=1}^n \beta_{ij} \cdot (iX_j), \qquad i = 1, \dots, n,$$
 (2)

and with (1) we obtain that the matrix representation of ad(X) ad(Y) with respect to

the basis ${\mathcal C}$ is given by

$$A' := M_{\mathcal{C}}(\operatorname{ad}(X)\operatorname{ad}(Y)) = \begin{pmatrix} B & -C \\ C & B \end{pmatrix}.$$

Thus

$$2 \cdot \Re K(X, Y) = 2\Re(\operatorname{tr} A) = 2B = \operatorname{tr} A' = K^{\mathbb{R}}(X, Y).$$

Exercise 4 (Exceptional isogeny of SL(2, \mathbb{C}) and SO(3, 1)). Let $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and consider the vector space

$$V = \{ x \in M_2(\mathbb{C}) \mid x^* = JxJ^{-1} \}$$

(where x^* denotes conjugate-transpose), endowed with the \mathbb{R} -bilinear \mathbb{R} -valued bilinear form

$$\langle x, y \rangle := \operatorname{Re}(\operatorname{Tr}(x\overline{y})))$$

(where \overline{y} denotes componentwise conjugation).

Consider the $G = SL(2, \mathbb{C})$ action on V given by $g \cdot x := gx\overline{g}^{-1}$, and use this to obtain an isogeny $SL(2, \mathbb{C}) \to SO(3, 1)$ (that is, show this gives a surjective homomorphism with finite kernel).

Solution. Note that we can also write

$$V = \left\{ x \in M_2(\mathbb{C}) \mid x = \begin{pmatrix} \alpha & ib \\ ic & \overline{\alpha} \end{pmatrix} \text{ where } \alpha \in \mathbb{C}, b, c \in \mathbb{R} \right\}$$

An orthogonal basis is given by

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

Under $\langle \cdot, \cdot \rangle$ these have values -2, 2, 2, 2 respectively and so the signature is (3, 1).

The G-action preserves $\langle \cdot, \cdot \rangle$ on $M_2(\mathbb{C})$, since

$$\operatorname{Tr}(gx\overline{g}^{-1}\overline{gy\overline{g}^{-1}}) = \operatorname{Tr}(gx\overline{g}^{-1}\overline{gy}\overline{g}^{-1}) = \operatorname{Tr}(gx\overline{y}g^{-1}) = \operatorname{Tr}(x\overline{y}\overline{y}g^{-1})$$

Note that G stabilises V: indeed for $g \in SL(2, \mathbb{C})$ we have $g^{-1} = Jg^t J^{-1}$, and so for $y \in V$ we have

$$(gy\overline{g}^{-1})^* = (\overline{g}^{-1})^*y^*g^* = (g^t)^{-1}JyJ^{-1}\overline{g}^t = (J(g^t)^tJ^{-1})(JyJ^{-1})(J\overline{g}^{-1}J^{-1})$$

= $JgJ^{-1}JyJ^{-1}J(\overline{g}^{-1})J^{-1} = J(gy\overline{g}^{-1})J^{-1}$

Hence G stabilises V and maps to a copy of SO(3, 1), with kernel $\{\pm Id\}$.