
Prof. Dr. A. Iozzi Symmetric Spaces HS 2024

Exercise Sheet 4

Part of the first exercise is to complete the proof of Theorem II.29. The numbering matches that of
the lectures — be warned, it might differ slightly in the notes. Exercises 2 and 3 rely on material
that you will see on Wednesday 06 November, or the week after.

Exercise 1 (Theorem II.29 - Decomposition of OSLA). Let (g,Θ) be an effective orthogonal
symmetric Lie-algebra. We have the Cartan decomposition g = u ⊕ e. We decomposed e =
e0 ⊕ e+ ⊕ e− and defined u+ = [e+, e+] and u− = [e−, e−]. u0 is defined to be the orthogonal
complement of u+ ⊕ u− in u.

(a) Find an OSLA (g,Θ), such that e0 = 0, but u0 ̸= 0.

Solution. The idea is to have a large u and a small e. This means that Θ should fix lots
of points. For example one can take g = sl(2,R)×so(3) and define Θ = Θsl(2,R)× Idso(3),
where Θsl(2,R) = De σ (for σ(g) = tg−1) is the usual Cartan involution on sl(2,R). Then
u = E1Θ = k × so(3) and e = E−1Θ = p × 0, where sl(2,R) = k ⊕ p is the Cartan
decomposition of sl(2,R).
We need to check that (g,Θ) is an orthogonal symmetric Lie-algebra (OSLA): Θ is an
involutive automorphism (since Θsl(2,R) and Idso(3) are) and we also have Θ ̸= Idg. The
definition of OSLA requires u to be compactly-embedded in g, that is adg(u) needs to
be the Lie algebra of a compact subgroup of GL(g). This is true since k × so(3) is the
lie algebra of the compact group SO(2) × SO(3) < SL(2,R) × SO(3) < GL(g). Note
that we were forced to take the Lie-algebra of a compact group as the second factor
(sl(2,R)× sl(2,R) would not have worked, but so(3)× so(3) would have).

Now one can calculate the Killing form, which turns out to be

A =


−8 0 0
0 8 0 0
0 0 8

−2 0 0
0 0 −2 0

0 0 −2


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in the basis

e1 =

((
0 −1
1 0

)
, 0

)
, e2 =

((
1 0
0 −1

)
, 0

)
, e3 =

((
0 1
1 0

)
, 0

)

e4 =

0,

0 0 0
0 0 −1
0 1 0

 , e5 =

0,

 0 0 1
0 0 0
−1 0 0

 , e6 =

0,

0 −1 0
1 0 0
0 0 0


of g = k×0⊕p×0⊕0×so(3) = ⟨e1⟩⊕⟨e2, e3⟩⊕⟨e4, e5, e6⟩. The first factor (= Killing form
of sl(2,R)) can be quite quickly computed by hand. As for the second factor (= Killing
form of so(3)), one can notice that so(3) is the Lie algebra of a compact semisimple group
and hence its Killing form is negative definite.

Since e = p × 0 = ⟨e2, e3⟩ × 0, we see that (cf. definition of e0, e+, e− in the proof of
Theorem II.29)

e0 = 0× 0, e− = p× 0, e+ = 0× 0.

Therefore
u− = [e−, e−] = k× 0, u+ = [e+, e+] = 0.

The remaining orthogonal complement in u is u0 = 0 × so(3) ̸= 0. So we have found a
OSLA with e0 = 0 and u0 ̸= 0.

The Lie algebra g = u0 ⊕ u− ⊕ e− is of non-compact type.

(b) Complete the proof of Lemma II.31 (3): that is, show that [u∓, e0] = [u∓, e±] = (0).

Hint: use Lemma II.30.

Solution. See lemma II.33 in the notes.

(c) Prove Corollary II.32: show that uε ⊕ eε, ε ∈ {−1, 0,+1}, are pairwise orthogonal ideals in g
(with respect to Bg).

Solution. See corollary II.34 in the notes.

(d) Let n ◁ g be an ideal of a Lie-algebra g. Prove that Bn = Bg|n×n.

Solution. Let us write a basis e1, . . . , en, en+1, . . . , em of g, where e1, . . . en is a basis of
n. Since n is an ideal, for X ∈ n, Y ∈ g, we have [X,Y ] ∈ n. Therefore adg(X) is of the
form

adg(X) =

(
adn(X) ∗

0 0

)
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and so for X,Y ∈ n we have

Bg(X,Y ) = tr(adg(X) ◦ adg(Y ))

= tr

(
adn(X) ◦ adn(Y ) ∗

0 0

)
= tr(adn(X) ◦ adn(Y ))

= Bn(X,Y ).

(e) Find an example of a subalgebra n ⊂ g, such that Bn ̸= Bg|n×n.

Solution. We consider the Cartan-decomposition g = sl(2,R) = k ⊕ p and set n := k.
We know that k is a subalgebra of g. Taking the basis

e1 =

(
0 −1
1 0

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 1
1 0

)
,

we get

adg(e1) =

0 0 0
0 0 −2
0 2 0


Let X = λ1 · e1, Y = λ2 · e1 ∈ n = ⟨e1⟩. Then

Bg(X,Y ) = tr(adg(X) ◦ adg(X)) = λ1 · λ2 · tr

0 0 0
0 −4 0
0 0 −4

 = −8 · λ1 · λ2,

but

Bn(X,Y ) = tr(adn(X) ◦ adn(X)) = tr(0 · 0) = 0

since adn(X) = 0 because [e1, e1] = 0.

(f) Let g = g1⊕g2 be a direct sum of two ideals g1 and g2. Further let k1 and k2 be subalgebras of
g1 and g2. Show that k1+ k2 is compactly embedded in g if and only if k1 and k2 is compactly
embedded in g1 and g2.

This implies that u0, u−, u+ are compactly embedded in g0, g− and g+.

Hint : For connected G and K < G, there is an isomorphism

K/(K ∩ Z(G)) ∼= AdG(K)

(compare Ex Sheet 2, exercise 5(b)). Use Lie(AdG(K)) = adLie(G)(Lie(K)).

Solution. By Lie’s third theorem there exist connected (and simply connected) Lie
groups G1 and G2 with Lie(G1) = g1 and Lie(G2) = g2. The Lie group G := G1 × G2

satisfies Lie(G) = g1 × g2. Since k1 and k2 are Lie-subalgebras, there exist K1 and
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K2 Lie-subgroups of G1 and G2 with Lie(K1) = k1 and Lie(K2) = k2. We also have
K := K1 ×K2 with Lie(K) = k1 × k2.

Now we have the center Z(G) = Z(G1)× Z(G2) and

Z(G) ∩K = (Z(G1)× Z(G2)) ∩ (K1 ×K2) = (Z(G1) ∩K1)× (Z(G2) ∩K2),

so

AdG(K) = K/(Z(G) ∩K)

= (K1 ×K2)/(Z(G1) ∩K1 × Z(G2) ∩K2)

= K1/(Z(G1) ∩K1)×K2/(Z(G2) ∩K2)

= AdG1
(K1)×AdG2

(K2).

Now adg(k1 + k2), adg1
(k1) and adg2

(k2) are the Lie-algebras of the groups AdG(K),
AdG1

(K1) and AdG2
(K2).

So k1 + k2 is compactly embedded in g by definition if and only if Ad(K) is compact
which is equivalent to saying AdG1(K1) and AdG2(K2) are compact, i.e. both k1 and k2
are compactly embedded in g1 resp. g2.

Exercise 2 (Theorem II.34 - Decomposition of simply connected RSS). (a) Let H,N ◁ G be
two normal subgroups. Show that [N,H] ⊂ N ∩H.

Solution. Let nhn−1h−1 ∈ [N,H], then (nhn1)h−1 ∈ Hh−1 ⊂ H and n(hn−1h−1) ∈
nN ⊂ N . So nhn−1h−1 ∈ H ∩N .

(b) Let H,N < G be connected subgroups. Show that [N,H] is a connected subgroup of G.

Solution. The map [·, ·] : N ×H → G is continuous, since it is a composition of multi-
plications. The image of connected sets under a continuous map is connected.

(c) Let M be a simply connected Riemannian symmetric space. Then g = Lie(Iso(M)◦) =
g0 ⊕ g+ ⊕ g−. We get corresponding Lie-subgroups G0, G+, G− and their universal covers
G̃0, G̃+, G̃−. Let K0,K+,K− be the Lie-subgroups associated to k0, k+, k−, which come from
the Cartan-decomposition of g0, g+, g−.

Show that (G̃0,K0), (G̃+,K+) and (G̃−,K−) are Riemannian symmetric pairs.

Solution. Let µ ∈ {0,+,−}. The G̃µ can be assumed to be connected.One can show

that ψ̃|K0×K−×K+
: K0 × K− × K+ → p−1(K) is a homeomorphism. The product of

sets is closed if and only if all the factors are closed, so Kµ are closed subgroups of G̃

and therefore also of G̃µ. Since kµ are compactly embedded, we get that AdG̃µ
(Kµ) are

compact.

By the Lie-group-correspondence, since G̃ is simply connected we get σ : G̃ → G̃ a
unique Lie-group automorphism, such that De σ = Θ. Now (using the pullback of the
isomorphism ψ), we can restrict σ to σµ : G̃µ → G̃µ. Since Θµ : gµ → gµ is an involution,
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so is σµ (they are not the identity).

It remains to show that (G̃
σµ
µ )◦ ⊂ Kµ ⊂ G̃

σµ
µ . Let X ∈ kµ. Then exp(X) ∈ G̃µ. We have

that σµ(exp(X)) = exp(ΘµX) = exp(X). So for all g ∈ Kµ in a small neighborhood of e,
we have σµ(g) = g. Since a neighborhood generates the connected groupKµ, we can write
elements g ∈ Kµ as a product g = g1 · . . . · gn and we get σµ(g) = σµ(g1) · . . . ·σµ(gn) = g.

So Kµ ⊂ G̃
σµ
µ .

Now we consider a neighbourhood V ⊂ exp(gµ) of e of G̃µ. Let exp(tX) ∈ V ∩(G̃
σµ
µ )◦ for

t ∈ (−ε, ε). Then exp(tX) = σµ(exp(tX)) = exp(tΘµ(X)), so (taking the derivative) we

get X = Θµ(X), i.e. X ∈ kµ and thus V ∩ (G̃
σµ
µ )◦ ⊂ Kµ. Now since (G̃

σµ
µ )◦ is connected,

the elements are generated by elements in Kµ, i.e. (G̃
σµ
µ )◦ ⊂ Kµ.

We conclude that (G̃µ,Kµ) are Riemannian symmetric pairs for {0,−,+}.

Exercise 3 (Complexification and Killing form). Let l0 be a Lie algebra over R and let l be the
complexification of l0. Let K0,K and KR denote the Killing forms of the Lie algebras l, l0 and lR,
respectively. Show that:

(a) K0(X,Y ) = K(X,Y ) for all X,Y ∈ l0;

(b) KR(X,Y ) = 2 · ℜ(K(X,Y )) for all X,Y ∈ lR.

Solution. The first relation is obvious. For the second let B := {Xi : i = 1, . . . , n} be a
basis of l. Let X,Y ∈ l. Then we may write

ad(X) ad(Y )(Xi) =

n∑
j=1

αij ·Xj , i = 1, . . . , n, (1)

for some complex numbers αij = βij + i · γij ∈ C. Denote by A,B,C the n × n-
matrices with entries αij , βij , γij , respectively. Then A is the matrix representation of
ad(X) ad(Y ) with respect to the basis B,

MB(ad(X) ad(Y )) = A = B + iC

and B, C are the real, imaginary parts of A. Now, consider the basis

C = {X1, . . . , Xn, iX1, . . . , iXn}

of lR. Then

ad(X) ad(Y )(iXi) =

n∑
j=1

−γij ·Xj +

n∑
j=1

βij · (iXj), i = 1, . . . , n, (2)

and with (1) we obtain that the matrix representation of ad(X) ad(Y ) with respect to
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the basis C is given by

A′ :=MC(ad(X) ad(Y )) =

(
B −C
C B

)
.

Thus
2 · ℜK(X,Y ) = 2ℜ(trA) = 2B = trA′ = KR(X,Y ).

Exercise 4 (Exceptional isogeny of SL(2,C) and SO(3, 1)). Let J =
(
0 −1
1 0

)
and consider the vector

space
V = {x ∈M2(C) | x∗ = JxJ−1}

(where x∗ denotes conjugate-transpose), endowed with the R-bilinear R-valued bilinear form

⟨x, y⟩ := Re(Tr(xy)))

(where y denotes componentwise conjugation).

Consider the G = SL(2,C) action on V given by g · x := gxg−1, and use this to obtain an isogeny
SL(2,C) → SO(3, 1) (that is, show this gives a surjective homomorphism with finite kernel).

Solution. Note that we can also write

V =
{
x ∈M2(C) | x =

(
α ib
ic α

)
where α ∈ C, b, c ∈ R

}
An orthogonal basis is given by(

1 0
0 1

)
,

(
i 0
0 −i

)
,

(
0 i
i 0

)
,

(
0 i
−i 0

)
Under ⟨·, ·⟩ these have values −2, 2, 2, 2 respectively and so the signature is (3, 1).

The G-action preserves ⟨·, ·⟩ on M2(C), since

Tr(gxg−1gyg−1) = Tr(gxg−1gyg−1) = Tr(gxyg−1) = Tr(xy)

Note that G stabilises V : indeed for g ∈ SL(2,C) we have g−1 = JgtJ−1, and so for y ∈ V we
have

(gyg−1)∗ = (g−1)∗y∗g∗ = (gt)−1JyJ−1gt =
(
J(gt)tJ−1

)(
JyJ−1

)(
Jg−1J−1

)
= JgJ−1JyJ−1J(g−1)J−1 = J(gyg−1)J−1

Hence G stabilises V and maps to a copy of SO(3, 1), with kernel {± Id}.
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