Exercise Sheet 4

Part of the first exercise is to complete the proof of Theorem II.29. The numbering matches that of the lectures $-$ be warned, it might differ slightly in the notes. Exercises 2 and 3 rely on material that you will see on Wednesday 06 November, or the week after.

Exercise 1 (Theorem II.29 - Decomposition of OSLA). Let (\mathfrak{g}, θ) be an effective orthogonal symmetric Lie-algebra. We have the Cartan decomposition $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{e}$. We decomposed $\mathfrak{e} = \mathfrak{e}_0 \oplus \mathfrak{e}_+ \oplus \mathfrak{e}_$ and defined $u_+ = [\mathfrak{e}_+, \mathfrak{e}_+]$ and $u_- = [\mathfrak{e}_-, \mathfrak{e}_-]$. u_0 is defined to be the orthogonal complement of $\mathfrak{u}_+ \oplus \mathfrak{u}_-$ in \mathfrak{u} .

- (a) Find an OSLA (\mathfrak{g}, θ) , such that $\mathfrak{e}_0 = 0$, but $\mathfrak{u}_0 \neq 0$.
- (b) Complete the proof of Lemma II.31 (3): that is, show that $[\mathfrak{u}_{\mp}, \mathfrak{e}_0] = [\mathfrak{u}_{\mp}, \mathfrak{e}_{\pm}] = (0)$. Hint: use Lemma II.30.
- (c) Prove Corollary II.32: show that $u_{\varepsilon} \oplus \varepsilon_{\varepsilon}, \varepsilon \in \{-1, 0, +1\}$, are pairwise orthogonal ideals in g (with respect to $B_{\mathfrak{g}}$).
- (d) Let $\mathfrak{n} \lhd \mathfrak{g}$ be an ideal of a Lie-algebra \mathfrak{g} . Prove that $B_{\mathfrak{n}} = B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.
- (e) Find an example of a subalgebra $\mathfrak{n} \subset \mathfrak{g}$, such that $B_{\mathfrak{n}} \neq B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.
- (f) Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ a direct sum of two ideals \mathfrak{g}_1 and \mathfrak{g}_2 . Further let \mathfrak{k}_1 and \mathfrak{k}_2 be subalgebras of \mathfrak{g}_1 and \mathfrak{g}_2 . Show that $\mathfrak{k}_1 + \mathfrak{k}_2$ is compactly embedded in \mathfrak{g} if and only if \mathfrak{k}_1 and \mathfrak{k}_2 is compactly embedded in \mathfrak{g}_1 and \mathfrak{g}_2 .

This implies that u_0, u_-, u_+ are compactly embedded in $\mathfrak{g}_0, \mathfrak{g}_-$ and \mathfrak{g}_+ .

Hint: For connected G and $K < G$, there is an isomorphism

$$
K/(K \cap Z(G)) \cong \mathrm{Ad}_G(K)
$$

(compare Ex Sheet 2, exercise 5(b)). Use $\text{Lie}(\text{Ad}_G(K)) = \text{ad}_{\text{Lie}(G)}(\text{Lie}(K)).$

- **Exercise 2** (Theorem II.34 Decomposition of simply connected RSS). (a) Let $H, N \triangleleft G$ be two normal subgroups. Show that $[N, H] \subset N \cap H$.
- (b) Let $H, N \leq G$ be connected subgroups. Show that $[N, H]$ is a connected subgroup of G.
- (c) Let M be a simply connected Riemannian symmetric space. Then $\mathfrak{g} = \text{Lie}(\text{Iso}(M)^{\circ}) =$ $\mathfrak{g}_0 \oplus \mathfrak{g}_+ \oplus \mathfrak{g}_-$. We get corresponding Lie-subgroups G_0, G_+, G_- and their universal covers $\widetilde{G}_0, \widetilde{G}_+, \widetilde{G}_-$. Let K_0, K_+, K_- be the Lie-subgroups associated to $\mathfrak{k}_0, \mathfrak{k}_+, \mathfrak{k}_-$, which come from the Cartan-decomposition of $\mathfrak{g}_0, \mathfrak{g}_+, \mathfrak{g}_-$.

Show that $(\tilde{G}_0, K_0), (\tilde{G}_+, K_+)$ and (\tilde{G}_-, K_-) are Riemannian symmetric pairs.

Exercise 3 (Complexification and Killing form). Let I_0 be a Lie algebra over $\mathbb R$ and let I be the complexification of \mathfrak{l}_0 . Let K_0, K and $K^{\mathbb{R}}$ denote the Killing forms of the Lie algebras $\mathfrak{l}, \mathfrak{l}_0$ and $\mathfrak{l}^{\mathbb{R}},$ respectively. Show that:

- (a) $K_0(X, Y) = K(X, Y)$ for all $X, Y \in I_0$;
- (b) $K^{\mathbb{R}}(X,Y) = 2 \cdot \Re(K(X,Y))$ for all $X, Y \in \mathfrak{l}^{\mathbb{R}}$.

Exercise 4 (Exceptional isogeny of $SL(2, \mathbb{C})$ and $SO(3, 1)$). Let $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and consider the vector space

$$
V = \{ x \in M_2(\mathbb{C}) \mid x^* = JxJ^{-1} \}
$$

(where x [∗] denotes conjugate-transpose), endowed with the R-bilinear R-valued bilinear form

$$
\langle x, y \rangle := \text{Re}(\text{Tr}(x\overline{y})))
$$

(where \bar{y} denotes componentwise conjugation).

Consider the $G = SL(2, \mathbb{C})$ action on V given by $g \cdot x := gx\overline{g}^{-1}$, and use this to obtain an isogeny $SL(2,\mathbb{C}) \rightarrow SO(3,1)$ (that is, show this gives a surjective homomorphism with finite kernel).