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Exercise Sheet 5

Exercise 1 (Duality of Sn and Hn). Show that the symmetric spaces Sn ∼= SO(n+ 1)/ SO(n) and
Hn ∼= SO(1, n)◦/SO(n) are dual to each other.

Solution. Recall that we have seen in the lecture that

(SO(n+ 1),SO(n), σ) and (SO(1, n)◦,SO(n), σ)

are Riemannian symmetric pairs, where σ(g) := I1,ngI1,n in both cases. Further we have seen
that the associated symmetric spaces SO(n+1)/ SO(n) and SO(1, n)◦/ SO(n) are isometric to
the n-sphere Sn and (real) hyperbolic n-space Hn respectivley. (These are Example (3) after
Corollary II.18 and exercise 1 of Exercise Sheet 3, respectively).

These have (so(n+ 1), ζ) and (so(1, n), ζ) as orthogonal symmetric Lie algebras, respectively,
where ζ(X) = dσ(X) = I1,nXI1,n in both cases.

We have also seen in the lecture that the orthogonal symmetric Lie algebras (so(p + q), ζp,q)
and (so(p, q), ζp,q) are dual to each other for all p, q ≥ 1 where ζp,q(X) = Ip,qXIp,q in both
cases. Thus for p = 1, q = n we obtain the assertion.

Exercise 2 (CAT(0) normed spaces). The goal of this exercise is to show that a normed vector
space is CAT(0) if and only if this norm is induced by an inner product.

(a) Let X be a CAT(0) space, and let σ, τ : [0, 1] → X be two geodesics. Show that the function
f : t 7→ d(σ(t), τ(t) is convex.

Recall that f is convex if for any 0 ≤ a < b ≤ 1, we have

f

(
a+ b

2

)
≤ f(a) + f(b)

2

Hint: consider the point σ(a+b
2 ) and the midpoint of σ(a) and τ(b) in a suitable comparison

triangle.

(b) Conclude that a CAT(0) space X is contractible.

Hint: Use the fact that X is uniquely geodesic.

(c) Show that if p ∈ X and σ : [0, 1] → X is a geodesic from x → y, then

d(p, σ(t))2 ≤ (1− t)d(p, x)2 + td(p, y)2 − t(1− t)d(x, y)2

for all t ∈ [0, 1].
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(d) Deduce the midpoint inequality : if p, x, y ∈ X and z is a midpoint between x and y (that is,
the point halfway along the geodesic segment joining x and y), then

d(p, z)2 ≤ 1
2 (d(p, x)

2 + d(p, y)2)− 1
4d(x, y)

2

(e) Suppose now X, || · || is a normed real vector space, and that it is CAT(0) with respect to the
induced metric. Show that it satisfies the parallelogram law : for any x, y ∈ X

||x+ y||2 + ||x− y||2 = 2
(
||x||2 + ||y||2

)
(f) Show that a norm on a real vector space X arises from an inner product if and only if the

norm satisfies the parallelogram law. In this case, the inner product is recovered by setting

⟨x, y⟩ := 1
4

(
||x+ y||2 − ||x− y||2

)
(g) Conclude that a normed real vector space (X, || · ||) is a CAT(0) space if and only if the norm

is induced by an inner product.

Solution. (a) This is Proposition III.1 (3) in the lectures.

(b) Fix some base point o ∈ X. Since X is uniquely geodesic, for any x ∈ X we can define
the geodesic σx : [0, 1] → X from o to x (notice it at constant, but not necessarily unit
speed). Then the map

X × [0, 1] → X : (x, t) 7→ σx(t)

is a homotopy from the identity on X to the constant map x 7→ o.

To see that it is continuous for any (x, t), (x′, t′) ∈ X × [0, 1] we calculate

d(σx(t), σx′(t′)) ≤ d(σx(t), σx′(t)) + d(σx′(t), σx′(t′))

≤ td(x, x′) + |t− t′|d(o, x′)

where we have used part (a) and the constant speed parameterisation of σx′ .

(c) Consider the comparison triangle x = 0, y, p. In particular by the CAT(0) property we
must have that d(σ(t), p) ≤ ||ty − p|| (here || · || denotes the Euclidean norm). Note
furthermore that

||ty − p||2 − t||y − p||2 = (t2 − t)||y||2 + (1− t)||p||2

(this is a similar verification using inner products) and the result follows.

(d) Substitute t = 1
2 in (c).

(e) Apply (d) with p = 0 to see that

||(x+ y)/2||2 ≤ ||x||2 + ||y||2

2
− ||x− y||2

4
(1)

2



Now apply (d) with (x+ y, x− y, 0) to see that

||x||2 ≤ ||x+ y||2 + ||x− y||2

2
− ||2y||2

4
(2)

Now (1) gives us the ≤ in the parallelogram law, and (2) is the ≥.

(f) This is a standard verification, for the details see Proposition 4.4 in Brisdon and Hae-
fliger’s Metric Spaces of Non-Positive Curvature.

(g) By the above we know that if a CAT(0) space has a real norm then it must be induced
by an inner product. The converse is clear (for any x, y, z translate so that x = 0, and
then work in the plane spanned by y and z).

Remark: It can be shown that (c) and (d) are in fact equivalent to the CAT(0) property, we won’t
need this.

Exercise 3. Show that a graph is CAT(0) if and only if it is a tree (Here the metric is given by
identifying each edge with the interval [0, 1]).

Solution. That a tree is CAT(0) is easy (draw any — all the triangles are tripods, and so
distances between comparison points will always be 0). Conversely, take any graph that isn’t
a tree. It will have some cycle, take a minimal one, this can be used to disprove the CAT(0)
inequality.

Exercise 4. Let G be a topological group, H a real Hilbert space, and α : G → Isom(H) an action
by isometries such that for any x ∈ H the map

G → H, g 7→ α(g)x

is continuous.

It is a fact (the Mazur-Ulam Theorem) that such an action is by affine isometries. That is, we have
two functions π : G → O(H) and b : G → H such that for any g ∈ G and x ∈ H,

α(g)x = π(g)x+ b(g)

(a) Show that b satisfies the cocycle condition

b(gh) = b(g) + π(g)b(h)

for all g, h ∈ G.

(b) Show that α has a fixed point −ξ if and only if

b(g) = π(g)ξ − ξ

for all g ∈ G.
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(c) Show that the following are equivalent:

(i) α has a fixed point;

(ii) α has a bounded orbit;

(iii) every orbit of α is bounded;

(iv) b is bounded.

Hint: Hilbert spaces are CAT(0).

Solution. (a) We must have that π(gh)x+ b(gh) = α(gh)x = α(g)α(h)x for all x ∈ H. We
calculate the right hand side:

α(g)α(h) = α(g)(π(h)x+ b(h))

= π(g)(π(h)x+ b(h)) + b(g)

= π(g)π(h)x+ (π(g)b(h) + b(h))

and hence the cocycle condition must hold.

(b) Observe that

ξ = α(g)(−ξ) ∀g ∈ G ⇐⇒ ξ = −π(g)ξ+b(g) ∀g ∈ G ⇐⇒ b(g) = π(g)ξ−ξ ∀g ∈ G

as required.

(c) (ii), (iii), and (iv) are equivalent since for every g ∈ G and x ∈ H,

α(g)x = π(g)x+ b(g) and ||π(g)x|| = ||x||

(π is orthogonal). Clearly (i) implies (ii), so it just remains to prove the converse.

Suppose that we have a bounded orbit S = α(G) · x0. By exercise 2 we know that H is
CAT(0) and hence by Proposition III.1 (1) in the lectures, there exists a unique xS ∈ X
such that S ⊂ B(xS , rS), where

rS := inf{r > 0 | S ⊂ B(x, r) for some x ∈ X}.

For any g ∈ G, α(g)S = S and hence by unqiueness of xS we must have that α(g)xS = xS ,
and we have (i).
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