Exercise Sheet 5

Exercise 1 (Duality of \mathbb{S}^n and \mathbb{H}^n). Show that the symmetric spaces $\mathbb{S}^n \cong SO(n+1)/SO(n)$ and $\mathbb{H}^n \cong SO(1,n)^\circ / SO(n)$ are dual to each other.

Solution. Recall that we have seen in the lecture that

$$
(SO(n+1), SO(n), \sigma)
$$
 and $(SO(1, n)^{\circ}, SO(n), \sigma)$

are Riemannian symmetric pairs, where $\sigma(g) := I_{1,n} g I_{1,n}$ in both cases. Further we have seen that the associated symmetric spaces $SO(n+1)/SO(n)$ and $SO(1,n)^\circ/SO(n)$ are isometric to the *n*-sphere \mathbb{S}^n and (real) hyperbolic *n*-space \mathbb{H}^n respectivley. (These are Example (3) after Corollary II.18 and exercise 1 of Exercise Sheet 3, respectively).

These have $(\mathfrak{so}(n+1), \zeta)$ and $(\mathfrak{so}(1,n), \zeta)$ as orthogonal symmetric Lie algebras, respectively, where $\zeta(X) = d\sigma(X) = I_{1,n} X I_{1,n}$ in both cases.

We have also seen in the lecture that the orthogonal symmetric Lie algebras ($\mathfrak{so}(p+q), \zeta_{p,q}$) and $(\mathfrak{so}(p,q), \zeta_{p,q})$ are dual to each other for all $p, q \geq 1$ where $\zeta_{p,q}(X) = I_{p,q} X I_{p,q}$ in both cases. Thus for $p = 1, q = n$ we obtain the assertion.

Exercise 2 (CAT (0) normed spaces). The goal of this exercise is to show that a normed vector space is CAT(0) if and only if this norm is induced by an inner product.

(a) Let X be a CAT(0) space, and let $\sigma, \tau : [0,1] \to X$ be two geodesics. Show that the function $f: t \mapsto d(\sigma(t), \tau(t))$ is convex.

Recall that f is convex if for any $0 \le a < b \le 1$, we have

$$
f\left(\frac{a+b}{2}\right) \le \frac{f(a)+f(b)}{2}
$$

Hint: consider the point $\sigma(\frac{a+b}{2})$ and the midpoint of $\sigma(a)$ and $\tau(b)$ in a suitable comparison triangle.

(b) Conclude that a $CAT(0)$ space X is contractible.

Hint: Use the fact that X is uniquely geodesic.

(c) Show that if $p \in X$ and $\sigma : [0,1] \to X$ is a geodesic from $x \to y$, then

$$
d(p, \sigma(t))^2 \le (1-t)d(p, x)^2 + td(p, y)^2 - t(1-t)d(x, y)^2
$$

for all $t \in [0, 1]$.

(d) Deduce the *midpoint inequality:* if $p, x, y \in X$ and z is a midpoint between x and y (that is, the point halfway along the geodesic segment joining x and y), then

$$
d(p,z)^{2} \le \frac{1}{2}(d(p,x)^{2} + d(p,y)^{2}) - \frac{1}{4}d(x,y)^{2}
$$

(e) Suppose now X, $||\cdot||$ is a normed real vector space, and that it is CAT(0) with respect to the induced metric. Show that it satisfies the *parallelogram law*: for any $x, y \in X$

$$
||x + y||2 + ||x - y||2 = 2 (||x||2 + ||y||2)
$$

(f) Show that a norm on a real vector space X arises from an inner product if and only if the norm satisfies the parallelogram law. In this case, the inner product is recovered by setting

$$
\langle x, y \rangle := \frac{1}{4} (||x + y||^2 - ||x - y||^2)
$$

(g) Conclude that a normed real vector space $(X, ||\cdot||)$ is a CAT(0) space if and only if the norm is induced by an inner product.

Solution. (a) This is Proposition III.1 (3) in the lectures.

(b) Fix some base point $o \in X$. Since X is uniquely geodesic, for any $x \in X$ we can define the geodesic $\sigma_x : [0,1] \to X$ from *o* to *x* (notice it at constant, but not necessarily unit speed). Then the map

$$
X \times [0,1] \to X : (x,t) \mapsto \sigma_x(t)
$$

is a homotopy from the identity on X to the constant map $x \mapsto o$. To see that it is continuous for any $(x,t), (x',t') \in X \times [0,1]$ we calculate

$$
d(\sigma_x(t), \sigma_{x'}(t')) \leq d(\sigma_x(t), \sigma_{x'}(t)) + d(\sigma_{x'}(t), \sigma_{x'}(t'))
$$

$$
\leq td(x, x') + |t - t'|d(o, x')
$$

where we have used part (a) and the constant speed parameterisation of $\sigma_{x'}$.

(c) Consider the comparison triangle $\bar{x} = 0, \bar{y}, \bar{p}$. In particular by the CAT(0) property we must have that $d(\sigma(t), p) \leq ||t\overline{y} - \overline{p}||$ (here $|| \cdot ||$ denotes the Euclidean norm). Note furthermore that

$$
||t\overline{y}-\overline{p}||^2-t||\overline{y}-\overline{p}||^2=(t^2-t)||\overline{y}||^2+(1-t)||\overline{p}||^2
$$

(this is a similar verification using inner products) and the result follows.

- (d) Substitute $t = \frac{1}{2}$ in (c).
- (e) Apply (d) with $p = 0$ to see that

$$
||(x+y)/2||^2 \le \frac{||x||^2 + ||y||^2}{2} - \frac{||x-y||^2}{4} \tag{1}
$$

Now apply (d) with $(x + y, x - y, 0)$ to see that

$$
||x||^2 \le \frac{||x+y||^2 + ||x-y||^2}{2} - \frac{||2y||^2}{4} \tag{2}
$$

Now (1) gives us the \leq in the parallelogram law, and (2) is the \geq .

- (f) This is a standard verification, for the details see Proposition 4.4 in Brisdon and Haefliger's Metric Spaces of Non-Positive Curvature.
- (g) By the above we know that if a $CAT(0)$ space has a real norm then it must be induced by an inner product. The converse is clear (for any x, y, z translate so that $x = 0$, and then work in the plane spanned by y and z).

Remark: It can be shown that (c) and (d) are in fact equivalent to the CAT(0) property, we won't need this.

Exercise 3. Show that a graph is $CAT(0)$ if and only if it is a tree (Here the metric is given by identifying each edge with the interval [0, 1]).

Solution. That a tree is $CAT(0)$ is easy (draw any — all the triangles are tripods, and so distances between comparison points will always be 0). Conversely, take any graph that isn't a tree. It will have some cycle, take a minimal one, this can be used to disprove the $CAT(0)$ inequality.

Exercise 4. Let G be a topological group, H a real Hilbert space, and α : $G \rightarrow \text{Isom}(\mathcal{H})$ an action by isometries such that for any $x \in \mathcal{H}$ the map

$$
G \to \mathcal{H}, \quad g \mapsto \alpha(g)x
$$

is continuous.

It is a fact (the *Mazur-Ulam Theorem*) that such an action is by affine isometries. That is, we have two functions $\pi: G \to O(\mathcal{H})$ and $b: G \to \mathcal{H}$ such that for any $g \in G$ and $x \in \mathcal{H}$,

$$
\alpha(g)x = \pi(g)x + b(g)
$$

(a) Show that b satisfies the cocycle condition

$$
b(gh) = b(g) + \pi(g)b(h)
$$

for all $g, h \in G$.

(b) Show that α has a fixed point $-\xi$ if and only if

$$
b(g) = \pi(g)\xi - \xi
$$

for all $g \in G$.

- (c) Show that the following are equivalent:
	- (i) α has a fixed point;
	- (ii) α has a bounded orbit;
	- (iii) every orbit of α is bounded;
	- (iv) b is bounded.

Hint: Hilbert spaces are $CAT(0)$.

Solution. (a) We must have that $\pi(gh)x + b(gh) = \alpha(gh)x = \alpha(g)\alpha(h)x$ for all $x \in \mathcal{H}$. We calculate the right hand side:

$$
\alpha(g)\alpha(h) = \alpha(g)(\pi(h)x + b(h))
$$

= $\pi(g)(\pi(h)x + b(h)) + b(g)$
= $\pi(g)\pi(h)x + (\pi(g)b(h) + b(h))$

and hence the cocycle condition must hold.

(b) Observe that

$$
\xi = \alpha(g)(-\xi) \quad \forall g \in G \iff \xi = -\pi(g)\xi + b(g) \quad \forall g \in G \iff b(g) = \pi(g)\xi - \xi \quad \forall g \in G
$$

as required.

(c) (ii), (iii), and (iv) are equivalent since for every $g \in G$ and $x \in \mathcal{H}$,

$$
\alpha(g)x = \pi(g)x + b(g)
$$
 and $||\pi(g)x|| = ||x||$

 $(\pi$ is orthogonal). Clearly (i) implies (ii), so it just remains to prove the converse.

Suppose that we have a bounded orbit $S = \alpha(G) \cdot x_0$. By exercise 2 we know that H is CAT(0) and hence by Proposition III.1 (1) in the lectures, there exists a unique $x_S \in X$ such that $S \subset \overline{B}(x_S, r_S)$, where

$$
r_S := \inf\{r > 0 \mid S \subset \overline{B}(x, r) \text{ for some } x \in X\}.
$$

For any $g \in G$, $\alpha(g)S = S$ and hence by unqiueness of x_S we must have that $\alpha(g)x_S = x_S$, and we have (i).