Prof. Dr. A. Tozzi Symmetric Spaces HS 2024

Exercise Sheet 5

Exercise 1 (Duality of S® and H"). Show that the symmetric spaces S® = SO(n + 1)/ SO(n) and
H™ = SO(1,n)°/SO(n) are dual to each other.

Solution. Recall that we have seen in the lecture that
(SO(n+1),S0(n), o) and (SO(1,n)°,SO(n), o)

are Riemannian symmetric pairs, where o(g) := I g1, in both cases. Further we have seen
that the associated symmetric spaces SO(n+1)/SO(n) and SO(1,7n)°/SO(n) are isometric to
the n-sphere S™ and (real) hyperbolic n-space H" respectivley. (These are Example (3) after
Corollary I1.18 and exercise 1 of Exercise Sheet 3, respectively).

These have (so(n + 1),¢) and (so(1,n), () as orthogonal symmetric Lie algebras, respectively,
where ((X) =do(X) =1, , XI5, in both cases.

We have also seen in the lecture that the orthogonal symmetric Lie algebras (so(p + q), (p.q)
and (so(p, q),(pq) are dual to each other for all p,q > 1 where (, ((X) = I, (X1, 4 in both
cases. Thus for p = 1,¢g = n we obtain the assertion.

Exercise 2 (CAT(0) normed spaces). The goal of this exercise is to show that a normed vector
space is CAT(0) if and only if this norm is induced by an inner product.

(a) Let X be a CAT(0) space, and let o, 7 : [0,1] = X be two geodesics. Show that the function
[t d(o(t),7(t) is convex.

Recall that f is convex if for any 0 < a < b < 1, we have

f (a;rb> < f(a);rf(b)

Hint: consider the point o(%f2) and the midpoint of o(a) and 7(b) in a suitable comparison
triangle.

(b) Conclude that a CAT(0) space X is contractible.
Hint: Use the fact that X is uniquely geodesic.

(¢) Show that if p € X and o : [0,1] — X is a geodesic from 2 — y, then
d(p,o(t))* < (1= t)d(p,x)* + td(p,y)* — t(1 — t)d(x,y)”

for all t € [0, 1].



(d) Deduce the midpoint inequality: if p,z,y € X and z is a midpoint between x and y (that is,
the point halfway along the geodesic segment joining x and y), then

d(p,2)* < $(d(p,z)* + d(p,y)*) — yd(z,y)

(e) Suppose now X, || || is a normed real vector space, and that it is CAT(0) with respect to the
induced metric. Show that it satisfies the parallelogram law: for any z,y € X

[l +yl[* + [l =yl = 2 (l2[]* + [ly]]*)

(f) Show that a norm on a real vector space X arises from an inner product if and only if the
norm satisfies the parallelogram law. In this case, the inner product is recovered by setting

(@,y) = 3 (llz +yl* = llz = yII*)

(g) Conclude that a normed real vector space (X, ||-||) is a CAT(0) space if and only if the norm
is induced by an inner product.

Solution. (a) This is Proposition III.1 (3) in the lectures.

(b) Fix some base point o € X. Since X is uniquely geodesic, for any x € X we can define
the geodesic o, : [0,1] — X from o to x (notice it at constant, but not necessarily unit
speed). Then the map

X x[0,1] = X : (z,t) = 04(t)

is a homotopy from the identity on X to the constant map = — o.

To see that it is continuous for any (z,t), (2/,t') € X x [0,1] we calculate

(0w (t), 00 (1)) < d(04(t), 00 () + d(ow (t), 0 ()
< td(z,z") + |t — t'|d(0, 2)

where we have used part (a) and the constant speed parameterisation of o, .

(c¢) Consider the comparison triangle T = 0,%,p. In particular by the CAT(0) property we
must have that d(o(t),p) < ||ty — P|| (here || - || denotes the Euclidean norm). Note
furthermore that

Ity — BII” — tllg — plI* = (& = )|[Fl|* + (1 — 1)l [p]|?
this 1s a similar verification using inner products) and the result follows.
his i imil ificati ing i d d th It foll
ubstitute ¢ = 5 in (c).
d) Substi % i
(e) Apply (d) with p = 0 to see that

ol + Q> _ 11z = 1P
I +y)/2)? < FIL (1)




Now apply (d) with (x + y,z — y,0) to see that

o+ 9l + 11z = ol _ Ji2all?
ol ? < : - 2)

Now (1) gives us the < in the parallelogram law, and (2) is the >.

(f) This is a standard verification, for the details see Proposition 4.4 in Brisdon and Hae-
fliger’'s Metric Spaces of Non-Positive Curvature.

(g) By the above we know that if a CAT(0) space has a real norm then it must be induced
by an inner product. The converse is clear (for any z,y, z translate so that = 0, and
then work in the plane spanned by y and z).

Remark: Tt can be shown that (¢) and (d) are in fact equivalent to the CAT(0) property, we won’t
need this.

Exercise 3. Show that a graph is CAT(0) if and only if it is a tree (Here the metric is given by
identifying each edge with the interval [0, 1]).

Solution. That a tree is CAT(0) is easy (draw any — all the triangles are tripods, and so
distances between comparison points will always be 0). Conversely, take any graph that isn’t
a tree. It will have some cycle, take a minimal one, this can be used to disprove the CAT(0)
inequality.

Exercise 4. Let G be a topological group, H a real Hilbert space, and « : G — Isom(#) an action
by isometries such that for any = € H the map

G—-H, g— a9

is continuous.

It is a fact (the Mazur-Ulam Theorem) that such an action is by affine isometries. That is, we have
two functions 7 : G — O(H) and b: G — H such that for any g € G and x € H,

a(g)r = m(g)z + b(g)

(a) Show that b satisfies the cocycle condition

b(gh) = b(g) + m(g)b(h)
for all g, h € G.

(b) Show that « has a fixed point —¢ if and only if

for all g € G.



(c) Show that the following are equivalent:

(i) « has a fixed point;

(i

i)
(iii) every orbit of « is bounded,;
(iv) b is bounded.

Hint: Hilbert spaces are CAT(0).

«a has a bounded orbit;

Solution. (a) We must have that w(gh)x + b(gh) = a(gh)z = a(g)a(h)x for all x € H. We
calculate the right hand side:

a(g)a(h) = a(g)(m(h)z + b(h))
= m(g)(r(h)z + b(h)) + b(g)
= m(g)m(h)z + (m(g)b(h) + b(h))

and hence the cocycle condition must hold.
(b) Observe that
§=a(g)(=f) VgelG = £=-m(g)i+blg) VgeG < blg) =m(9){-¢§ VgeC
as required.
(¢) (ii), (iii), and (iv) are equivalent since for every g € G and x € H,
a(g)z =m(g)r +b(g) and [[r(g)z|| = |||

(7 is orthogonal). Clearly (i) implies (ii), so it just remains to prove the converse.

Suppose that we have a bounded orbit S = a(G) - zy. By exercise 2 we know that H is
CAT(0) and hence by Proposition IIL.1 (1) in the lectures, there exists a unique rs5 € X
such that S C B(zg,rs), where

rg :=inf{r > 0| S C B(z,r) for some z € X}.

For any g € G, a(g)S = S and hence by ungiueness of zg we must have that a(g)zs = g,
and we have (i).




