Prof. Dr. A. Iozzi Symmetric Spaces HS 2024

Exercise Sheet 6

Exercise 1 (Maximal abelian subspaces and regular elements in $\mathfrak{sl}(n,\mathbb{R})$). Let $\mathfrak{g} = \mathfrak{sl}(n,\mathbb{R})$. A Cartan decomposition of g is given by $g = \mathfrak{k} + \mathfrak{p}$ where $\mathfrak{p} = \{X \in \mathfrak{sl}(n,\mathbb{R}) : X = X^t\}$ and $\mathfrak{k} = \{X \in \mathfrak{sl}(n,\mathbb{R}) : X = -X^t\}.$ We have seen in the lecture that

$$
\mathfrak{a} = \left\{ \mathrm{diag}(t_1,\ldots,t_n) : t_j \in \mathbb{R}, \sum_{j=1}^n t_j = 0 \right\}.
$$

is a maximal Abelian subspace of p.

- (a) Prove (without appealing to the general theorem) that any maximal abelian subspace of p is of the form $S \mathfrak{a} S^{-1}$ where $S \in SO(n)$.
- (b) Show that $X \in \mathfrak{p}$ is a regular element if and only if all of its eigenvalues are distinct.
- **Solution.** (a) Let a' be a maximal abelian subspace of p with basis $\{Y_1, \ldots, Y_r\}$. All of the Y_i commute pairwise, whence there is an element $S \in O(n)$ that diagonalises all of them simultaneously, that is $SY_iS^{-1} = D_i$ for every $i = 1, ..., r$ where D_i is some traceless diagonal matrix. Because we are free to multiply S with diag($-1, 1, \ldots, 1$) we may assume that $S \in SO(n)$. It follows, that $S \mathfrak{a}' S^{-1} \subseteq \mathfrak{a}$ and due to maximality $S\mathfrak{a}'S^{-1}=\mathfrak{a}.$
- (b) Let $C_{\mathfrak{g}}(X)$ be the centraliser of X in \mathfrak{g} . Let $X \in \mathfrak{p}$ be a regular element, so $C_{\mathfrak{g}}(X) \cap \mathfrak{p}$ is maximal abelian. By part (b) there is $S \in SO(n)$ such that

$$
\mathfrak{a} = S(C_{\mathfrak{g}}(X) \cap \mathfrak{p})S^{-1} = C_{\mathfrak{g}}(SXS^{-1}) \cap \mathfrak{p}.\tag{1}
$$

We have used here that $K = SO(n)$ acts via the adjoint representation $Ad(S)X =$ SXS^{-1} , which is by Lie algebra automorphisms preserving the Cartan decomposition. Then $SXS^{-1} = \text{diag}(\lambda_1, \ldots, \lambda_n) =: D$ is a diagonal matrix and $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of X. Let $P_{ij} \in \mathfrak{p}$ denote the $n \times n$ -permutation-matrix that permutes the canonical basis vectors $e_i \leftrightarrow e_j$ for all $i \neq j$ and fixes the rest. Then

$$
[D, P_{ij}](e_k) = DP_{ij}e_k - P_{ij}De_k = 0
$$

for every $k \neq i, j$,

$$
[D, P_{ij}](e_i) = DP_{ij}e_i - P_{ij}De_i = (\lambda_j - \lambda_i)e_j
$$

and

$$
[D, P_{ij}](e_j) = DP_{ij}e_j - P_{ij}De_i = (\lambda_i - \lambda_j)e_j.
$$

Thus $P_{ij} \in C_{\mathfrak{g}}(D) \cap \mathfrak{p}$ if $\lambda_i = \lambda_j$. However, $P_{ij} \notin \mathfrak{a}$ which contradicts (1).

Conversely, let $X \in \mathfrak{p}$ have distinct eigenvalues. By a theorem of the lecture we know that X is contained in a maximal abelian subspace \mathfrak{a}' and there is $S \in SO(n)$ such that $S \mathfrak{a}' S^{-1} = \mathfrak{a}$. Note that $D = \text{diag}(\lambda_1, \ldots, \lambda_n) = S X S^{-1}$ and $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of X. Obviously, $C_{\mathfrak{g}}(D) \cap \mathfrak{p} \supseteq \mathfrak{a}$. Now, let $Y \in C_{\mathfrak{g}}(D) \cap \mathfrak{p}$. For all $i, j = 1, ..., n$ it holds

$$
0 = [Y, D]_{ij} = y_{ij}(\lambda_j - \lambda_i),
$$

thus we obtain $y_{ij}\lambda_i = y_{ij}\lambda_j$ for all $i, j = 1, ..., n$. Since the eigenvalues of X are distinct that implies that $y_{ij} = 0$ for $i \neq j$, whence $C_{\mathfrak{g}}(D) \cap \mathfrak{p} \subseteq \mathfrak{a}$.

Exercise 2 (Maximal abelian subspaces and regular elements in $\mathfrak{sp}(2n,\mathbb{R})$). Let $\mathfrak{g} = \mathfrak{sp}(2n,\mathbb{R})$. Recall that a Cartan decomposition of $\mathfrak g$ is given by $\mathfrak g = \mathfrak k + \mathfrak p$ where

$$
\mathfrak{p} = \left\{ \begin{pmatrix} A & B \\ B & -A \end{pmatrix} : A = A^t, B = B^t \right\}
$$
\n
$$
\mathfrak{k} = \left\{ \begin{pmatrix} A & B \\ -B & A \end{pmatrix} : A = -A^t, B = B^t \right\}.
$$

(a) Define

and

$$
\mathfrak{a} = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix} : A = \text{diag}(t_1, \dots, t_n). \right\}.
$$

Prove that A is a maximal abelian subspace of $\mathfrak p$.

(b) Show that $X \in \mathfrak{p}$ is a regular element if and only if all of its eigenvalues are distinct and non-zero.

Solution. (a) It is immediate to check that α is abelian. It remains to show that it is maximal abelian. Let $\mathfrak{a}' \supseteq \mathfrak{a}$ be an abelian subspace of \mathfrak{p} containing \mathfrak{a} . Let $Y =$ $\begin{pmatrix} A & B \end{pmatrix}$ $B - A$ $\Big) \in \mathfrak{a}'$. Then for every $X = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$ $0 - D$ $\Big) \in \mathfrak{a}$ we calculate $0 = [Y, X] = \begin{pmatrix} AD - DA & -BD - DB \\ BD + DB & AD - DA \end{pmatrix} = \begin{pmatrix} [A, D] & -BD - DB \\ BD + DB & [A, D] \end{pmatrix}$ $BD + DB$ $[A, D]$ $\big).$

 $=$ As in 1a) it follows that A is diagonal. Furthermore, $BD + DB = 0$ is equivalent to

$$
b_{ij}(\lambda_i + \lambda_j) = 0 \qquad \forall i, j = 1, \dots, n
$$

where $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ so that $B = 0$ for an appropriate choice of $\lambda_1, \dots, \lambda_n$. That implies that $Y \in \mathfrak{a}$, whence $\mathfrak{a}' = \mathfrak{a}$, and \mathfrak{a} is indeed maximal.

(b) The proof is essentially the same as for $\mathfrak{sl}(n,\mathbb{R})$. Suppose $X \in \mathfrak{p}$ is regular, that is $C_{\mathfrak{g}}(X) \cap \mathfrak{p}$ is maximal abelian. Then there is some $k \in K := SO(2n, \mathbb{R}) \cap Sp(2n, \mathbb{R})$ such that

$$
k(C_{\mathfrak{g}}(X)\cap\mathfrak{p})k^{-1}=C_{\mathfrak{g}}(kXk^{-1})\cap\mathfrak{p}=\mathfrak{a}.
$$

Write

$$
kXk^{-1} = \begin{pmatrix} D & 0 \\ 0 & -D \end{pmatrix}
$$

with $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Note that $\lambda_1, \ldots, \lambda_n, -\lambda_1, \ldots, -\lambda_n$ are the eigenvalues of X. It is easy to verify, that if $\lambda_i = \lambda_j$ for $i \neq j$ then

$$
\begin{pmatrix} P_{ij} & 0 \ 0 & -P_{ij} \end{pmatrix} \in C_{\mathfrak{g}}(X) \cap \mathfrak{p}
$$

but not in **a**, and if $\lambda_i = 0$ then

$$
\begin{pmatrix} 0 & E_{ii} \\ E_{ii} & 0 \end{pmatrix} \in C_{\mathfrak{g}}(X) \cap \mathfrak{p}
$$

but not in **a**. Both contradicts X being regular, so $\lambda_1, \ldots, \lambda_n$ must be pairwise distinct and non-zero.

Conversely, let $X \in \mathfrak{p}$ have distinct and non-zero eigenvalues. By a theorem in the lectures we know that X is contained in a maximal abelian subspace \mathfrak{a}' and there is $k \in K$ such that $k\mathfrak{a}'k^{-1} = \mathfrak{a}$. Note that

$$
kXk^{-1} = \begin{pmatrix} D & 0 \\ 0 & -D \end{pmatrix} =: T
$$

where $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and $\lambda_1, \ldots, \lambda_n, -\lambda_1, \ldots, -\lambda_n$, are the eigenvalues of X. Obviously, $C_{\mathfrak{g}}(T) \cap \mathfrak{p} \supseteq \mathfrak{a}$. Now, let $Y \in C_{\mathfrak{g}}(T) \cap \mathfrak{p}$. Then by the same computation as in (a), we obtain $y_{ij} = 0$ for all $i \neq j$, whence $C_{\mathfrak{g}}(T) \cap \mathfrak{p} \subseteq \mathfrak{a}$.

Exercise 3 (The Siegel upper half space). Let

$$
\mathbb{H}_n := \{ Z \in \mathbb{C}^{n \times n} : Z = Z^t, \text{ Im}(Z) \text{ is positive-definite} \}.
$$

Find an explicit isomorphism between \mathbb{H}_n and $Sp(2n,\mathbb{R})/(SO(2n)\cap Sp(2n,\mathbb{R}))$. Use this and the previous exercise to construct a maximal flat of \mathbb{H}_n .

Hint: Consider the map

$$
\varphi : \operatorname{Sp}(2n, \mathbb{R}) \to \mathbb{H}_n,
$$

$$
\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto (Ai + B) \cdot (Ci + D)^{-1}.
$$

Solution. The space \mathbb{H}_n is also called the *Siegel upper half space*. Before we solve the problem we will show that the symplectic group $G := Sp(2n, \mathbb{R})$ acts transitively via *generalized Möbius* transformations

$$
\begin{pmatrix} A & B \\ C & D \end{pmatrix} \star Z := (AZ + B)(CZ + D)^{-1}
$$

on \mathbb{H}_n and that $i \cdot I_n$ has stabilizer $K := \mathrm{Sp}(2n, \mathbb{R}) \cap \mathrm{SO}(2n, \mathbb{R})$.

In order to do so, let us first see that our definition makes sense, i.e. that $(CZ + D)$ is indeed invertible and $g \star Z \in \mathbb{H}_n$ for every $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}(2n, \mathbb{R}), Z \in \mathbb{H}_n$. Put

$$
P := AZ + B, \quad Q := CZ + D.
$$

Recall that $g \in \text{Sp}(2n, \mathbb{R})$ is equivalent to $A^tC = C^tA$, $B^tD = D^tB$ and $A^tD - C^tB = I$. Then

$$
Pt \bar{Q} - Qt \bar{P} = (ZAt + Bt)(C\bar{Z} + D) - (ZCt + Dt)(A\bar{Z} + B)
$$
\n(2)

$$
= ZA^t C\bar{Z} + ZA^t D + B^t C\bar{Z} + B^t D \tag{3}
$$

$$
- (ZC^t A\bar{Z} + ZC^t B + D^t A\bar{Z} + D^t B) \tag{4}
$$

$$
= Z - \bar{Z} = 2i \operatorname{Im} Z. \tag{5}
$$

Suppose $\xi \in \mathbb{C}^n$ is in the kernel of Q. Then

$$
\xi^t \operatorname{Im} Z\overline{\xi} = \frac{1}{2i} \left(\xi^t P^t \overline{Q} \overline{\xi} - \xi^t Q^t \overline{P} \xi \right) = 0.
$$

Since Im Z is positive definite, that implies that $\xi = 0$. Therefore, Q is invertible.

That $g \star Z$ is symmetric is equivalent to

$$
P^t Q = (Z^t A^t + B^t)(CZ + D) = (Z^t C^t + D^t)(AZ + B) = Q^t P
$$

which follows again from g being symplectic.

Also

Im
$$
(g \star Z)
$$
 = $\frac{1}{2i} (PQ^{-1} - \bar{P}\bar{Q}^{-1})$
 = $\frac{1}{2i} ((Q^{-1})^t P^t - \bar{P}\bar{Q}^{-1})$

is positive definite if and only if

$$
Qt Im(g \star Z) \overline{Q} = \frac{1}{2i} \left(Qt (Q-1)t Pt \overline{Q} - Qt \overline{P} \overline{Q}^{-1} \overline{Q} \right)
$$

$$
= \frac{1}{2i} (Pt \overline{Q} - Qt \overline{P}) = Im Z
$$

is positive definite by (5).

Let us now verify that \star is an action. It is immediate that $I \star Z = Z$. Let

$$
g = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix}, \quad h = \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix} \in \text{Sp}(2n, \mathbb{R}).
$$

Then

$$
g \star (h \star Z) = ((A_1 A_2 Z + A_1 B_2)(C_2 Z + D_2)^{-1} + B_1)
$$

\n
$$
\cdot ((C_1 A_2 Z + C_1 B_2)(C_2 Z + D_2)^{-1} + D_1)^{-1}
$$

\n
$$
= ((A_1 A_2 Z + A_1 B_2) + B_1 (C_2 Z + D_2))(C_2 Z + D_2)^{-1}
$$

\n
$$
\cdot (C_2 Z + D_2)((C_1 A_2 Z + C_1 B_2) + D_1 C_2 Z + D_1 D_2)^{-1}
$$

\n
$$
= (g \cdot h) \star Z.
$$

That finishes the proof that the symplectic group acts via generalized Möbius transformations on the Siegel upper half space.

Now, let us see that the action is transitive. Indeed, let $Z = X + iY \in \mathbb{H}_n$. Then the matrices

$$
g = \begin{pmatrix} \sqrt{Y} & 0 \\ 0 & \sqrt{Y^{-1}} \end{pmatrix}, \quad h = \begin{pmatrix} I & X \\ 0 & I \end{pmatrix}
$$

are symplectic and it is readily verified that $(hg) \star iI = X + iY$.

Finally, suppose that

$$
g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}(2n, \mathbb{R})
$$

stabilizes iI. Then $iI = (Ai + B)(Ci + D)^{-1}$ which is equivalent to $B = -C$ and $A = D$. Because g is symplectic we obtain $I = A^t A + B^t B$ and $A^t B = B^t A$. Therefore

$$
g^t g = \begin{pmatrix} A^t & -B^t \\ B^t & A^t \end{pmatrix} \begin{pmatrix} A & B \\ -B & A \end{pmatrix} = \begin{pmatrix} A^t A + B^t B & A^t B - B^t A \\ B^t A - A^t B & B^t B + A^t A \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix},
$$

whence $g \in SO(2n, \mathbb{R})$, and $\text{Stab}(iI) \subseteq K$. Vice versa, let

$$
g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in K.
$$

From $g^t g = I$ we obtain

$$
A^t A + C^t C = I = B^t B + D^t D, \qquad 0 = A^t B + C^t D (= B^t A + D^t C)
$$

and because q is symplectic

$$
AtC = CtA, \qquad BtD = DtB, \qquad AtD - CtB = I.
$$

In particular,

$$
I = AtD - CtB + iAtB + iCtD = At(D + iB) + Ct(Di - B)
$$
 (6)

and

$$
I = DtD + BtB = (Dt + iBt)(D - iB),
$$

whence $(D + iB)^{-1} = D^t - iB^t$. Using that relation in (6) we obtain

$$
D^{t} - iB^{t} = A^{t} + C^{t}(iD - B)(D^{t} - iB^{t}) = A^{t} + iC^{t}
$$

so that $A = D$ and $B = -C$. That is equivalent to $q \star iI = iI$.

This shows that \mathbb{H}_n is diffeomorphic to $\text{Sp}(2n, \mathbb{R})/\text{Sp}(2n, \mathbb{R}) \cap \text{SO}(2n, \mathbb{R})$ via the map

$$
\varphi: G/K \to \mathbb{H}_n, gK \mapsto g \star iI.
$$

By exercise 2) a maximal abelian subspace of $\mathfrak p$ is given by

$$
\mathfrak{a} = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix} : A = \text{diag}(t_1, \dots, t_n). \right\}.
$$

Thus a maximal flat subspace of G/K is given by $\exp(\mathfrak{a})K$. Note that

$$
\exp(\mathfrak{a}) = \left\{ \begin{pmatrix} \mathrm{diag}(\lambda_1,\ldots,\lambda_n) & 0 \\ 0 & \mathrm{diag}(\frac{1}{\lambda_1},\ldots,\frac{1}{\lambda_n}) \end{pmatrix} : \lambda_1,\ldots,\lambda_n > 0 \right\}.
$$

Therefore,

$$
\varphi(\exp(\mathfrak{a})K) = \{g \star iI : g \in \exp \mathfrak{a}\}
$$

$$
= \{i\text{diag}(\lambda_1^2, \dots, \lambda_n^2) : \lambda_i > 0\}
$$

is a maximal flat subspace of \mathbb{H}_n via the identification $\varphi: G/K \to \mathbb{H}_n$.

Exercise 4 (Irreducible representations of $\mathfrak{sl}(2,\mathbb{C})$). Let $V = \mathbb{C}[X,Y]$ be the vector space of polynomials in two variables. Let V_m denote the vector subspace of all homogeneous polynomials of degree m. This has a basis given by the monomials $X^m, X^{m-1}Y, \ldots, Y^m$. We turn this vector subspace into a module for $\mathfrak{sl}(2,\mathbb{C})$ by defining a Lie algebra homomorphism $\varphi : \mathfrak{sl}(2,\mathbb{C}) \to \mathfrak{gl}(V_m)$ in the following way

$$
\varphi\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) = X\frac{\partial}{\partial Y}, \quad \varphi\left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right) = Y\frac{\partial}{\partial X}, \quad \varphi\left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\right) = X\frac{\partial}{\partial X} - Y\frac{\partial}{\partial Y}.
$$

Show that this defines an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$.

Solution. Put

and

$$
E' = \varphi(E) = X \frac{\partial}{\partial Y}, \quad F' = \varphi(F) = Y \frac{\partial}{\partial X}, \quad H' = \varphi(H) = X \frac{\partial}{\partial X} - Y \frac{\partial}{\partial Y}.
$$

 $0 -1$

 $\Big),$

 $E=\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix},\quad F=\begin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix},\quad H=\begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$

One easily checks that

$$
[E,F]=H,\quad [E,H]=-2E,\quad [F,H]=2F,
$$

and

$$
[E', F'] = H', \quad [E', H'] = -2E', \quad [F', H'] = 2F',
$$

so that φ defines a Lie algebra homomorphism.

It remains to be shown that φ is irreducible. Suppose that there is a non-trivial invariant subspace $0 \leq V' \leq V_m$, and let $v' \in V'$ be non-zero. Since $\deg_Y(E'v) < \deg_Y v$ for all $v \in V_m$, there is a minimal $k \in \mathbb{N}$ such that $E'^{k+1}v' = 0$. Then $0 \neq E'^{k}v' \in \text{ker} E' = \mathbb{C}X^m$, i.e. $E'^k v' = \alpha X^m$ for some non-zero $\alpha \in \mathbb{C}$. Now, applying F' successively to αX^m yields the full basis $\{X^m, X^{m-1}Y, \ldots, XY^{m-1}, Y^m\}$ which is contained in V' by invariance. However, that implies that $V' = V_m$ contradicting our assumption.