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Exercise Sheet 6

Exercise 1 (Maximal abelian subspaces and regular elements in sl(n,R)). Let g = sl(n,R). A
Cartan decomposition of g is given by g = €+ p where p = {X € sl(n,R) : X = X'} and
t={X €sl(n,R): X = — X'}, We have seen in the lecture that

n
a= 1 diag(ts,... 1) i t; ER,Y ;=0
j=1

is a maximal Abelian subspace of p.

(a) Prove (without appealing to the general theorem) that any maximal abelian subspace of p is
of the form SaS~—! where S € SO(n).

(b) Show that X € p is a regular element if and only if all of its eigenvalues are distinct.

Solution. (a) Let o/ be a maximal abelian subspace of p with basis {Y7,...,Y,.}. All of

the Y; commute pairwise, whence there is an element S € O(n) that diagonalises all
of them simultaneously, that is SY;S~! = D; for every i = 1,...,r where D; is some
traceless diagonal matrix. Because we are free to multiply S with diag(—1,1,...,1)
we may assume that S € SO(n). It follows, that Sa’S™ C a and due to maximality
Sa’S~! = a.

Let Cy(X) be the centraliser of X in g. Let X € p be a regular element, so Cg(X) Np is
maximal abelian. By part (b) there is S € SO(n) such that

0= 8(Cy(X)Np)S~! = Cx(SXS~Y) Nyp. (1)

We have used here that K = SO(n) acts via the adjoint representation Ad(S)X =
SXS~!, which is by Lie algebra automorphisms preserving the Cartan decomposition.
Then SXS~! = diag(\1,...,\n) =: D is a diagonal matrix and Aj,...,\, are the
eigenvalues of X. Let P;; € p denote the n X n-permutation-matrix that permutes the
canonical basis vectors e; <+ e; for all 4 # j and fixes the rest. Then

[D,Pij](ek) = DPijek - R-]-Dek =0
for every k #1, 7,
[D, Pij](ei) = DPijei — PijDei = ()\J — )\i)ej

and
[D, Pijl(e;) = DPijej — PijDei = (X = Aj)e;.




Thus P;; € Cy(D) Ny if A; = ;. However, P;; ¢ a which contradicts (1).

Conversely, let X € p have distinct eigenvalues. By a theorem of the lecture we know
that X is contained in a maximal abelian subspace a’ and there is S € SO(n) such
that Sa’S™! = a. Note that D = diag(\1,...,A\,) = SXS~! and \q,..., A\, are the
eigenvalues of X. Obviously, Cy(D)Np 2 a. Now, let Y € Cy(D)Np. Foralli,j=1,...,n
it holds

0= [, DJi; = yi(A; — Ai),

thus we obtain y;;A; = yi;A; for all 4,5 = 1,...,n. Since the eigenvalues of X are distinct
that implies that y;; = 0 for ¢ # j, whence Cy(D) Np C a.

Exercise 2 (Maximal abelian subspaces and regular elements in sp(2n,R)). Let g = sp(2n,R).
Recall that a Cartan decomposition of g is given by g = € + p where

:{@ BA> :A:At,B:Bt}
e{(_AB i) :AAt,BBt}.

0= {(g‘ _0A> :A:diag(tl,...,tn).}.

Prove that A is a maximal abelian subspace of p.

and

(a) Define

(b) Show that X € p is a regular element if and only if all of its eigenvalues are distinct and
Nnon-zero.

Solution. (a) It is immediate to check that a is abelian. It remains to show that it is
maximal abelian. Let a’ D a be an abelian subspace of p containing a. Let YV =

A B , (D 0
(B A) € a’. Then for everyX_(O D) € a we calculate

0—v.x]= (AD-DA -BD-DB\_( [AD] ~-BD-DB
~WAT\BD+DB AD-DA )~ \BD+DB  [A,D]

=As in 1a) it follows that A is diagonal. Furthermore, BD + DB = 0 is equivalent to
bij(/\i—i—)\j):O Vi,j=1,....n

where D = diag(Aq,...,\,) so that B = 0 for an appropriate choice of Ay, ..., A,. That
implies that Y € a, whence a’ = a, and a is indeed maximal.

(b) The proof is essentially the same as for sl(n,R). Suppose X € p is regular, that is
Cy(X) Np is maximal abelian. Then there is some k € K := SO(2n,R) N Sp(2n, R) such
that

E(Cy(X)Np)k™' = Cy(kXEk™ ) Np =a.




Write
1 (D 0
kXEk (O D

with D = diag(A1,...,An). Note that Aq,..., Ay, —A1,..., =\, are the eigenvalues of X.
It is easy to verify, that if \; = A; for 7 # j then

Py 0
< 0 _Pz‘j> € Cy(X)Np

but not in a, and if A; = 0 then

0 Ey
(Eii O) GCQ(X)OP

but not in a. Both contradicts X being regular, so Aq,..., A, must be pairwise distinct
and non-zero.

Conversely, let X € p have distinct and non-zero eigenvalues. By a theorem in the
lectures we know that X is contained in a maximal abelian subspace a’ and there is
k € K such that ka’k~! = a. Note that

1 _ (D 0\
i = (2 0) <ot

where D = diag(Ag,...,\n) and Aq, ..., Ay, —A1, ..., =\, are the eigenvalues of X.
Obviously, Cg(T) Np O a. Now, let Y € Cy(T) Np. Then by the same computation as
in (a), we obtain y;; = 0 for all ¢ # j, whence Cy(T) Np C a.

Exercise 3 (The Siegel upper half space). Let
H, :={Z e C"":Z=Z" Tm(Z) is positive-definite}.

Find an explicit isomorphism between H,, and Sp(2n,R)/(SO(2n) N Sp(2n,R)). Use this and the
previous exercise to construct a maximal flat of H,,.

Hint: Consider the map

v :Sp(2n,R) — H,,

(é IB)) — (Ai+ B) - (Ci+ D)%

Solution. The space H,, is also called the Siegel upper half space. Before we solve the problem
we will show that the symplectic group G := Sp(2n,R) acts transitively via generalized Mobius
transformations

C D
on H,, and that ¢ - I,, has stabilizer K := Sp(2n,R) N SO(2n,R).

(A B) «Z = (AZ + B)(CZ + D)~




In order to do so, let us first see that our definition makes sense, i.e. that (CZ + D) is indeed

invertible and g x Z € H,, for every g = (é g) € Sp(2n,R), Z € H,,. Put

P:=AZ+B, Q:=CZ+D.

Recall that g € Sp(2n,R) is equivalent to A'C = C*A, B'D = D'B and A'D — C*'B = I.

Then

P'Q - Q'P = (ZA"'+ B")(CZ + D) — (ZC" + D")(AZ + B)
= ZA'CZ + ZA'D + B'CZ + B'D
—(ZC*AZ + ZC'B + D'AZ + D'B)
=7Z-Z=2ilmZ.

Suppose £ € C” is in the kernel of Q). Then
€'tmZE— & (€'P'QE — Q' PE) — 0.
Since Im Z is positive definite, that implies that £ = 0. Therefore, @ is invertible.
That g x Z is symmetric is equivalent to
P'Q = (Z'A' + B")(CZ + D) = (Z'C* + D")(AZ + B) = Q'P
which follows again from g being symplectic.

Also
Im(gxZ) = & (PQ™' — PQ™")
=% (@) P -PQ7)

is positive definite if and only if

is positive definite by (5).

Let us now verify that x is an action. It is immediate that [ x Z = Z. Let

(A B (A B
g_<C'1 D1>’ h_<C2 D2>€Sp(2n,R).




Then

g (hxZ) = ((A1AsZ + A1 B5)(CoZ + D)t + By)

- ((C1A2Z + C1By)(C2Z + D3) ™' + D)

= ((A1A2Z + A1 By) + B1(CoZ + D3))(C2Z + Do)~ !
(CoZ 4 D3)((C1A2Z + C1By) + D1CoZ + Dy Dy) ™!
=(g-h)*Z.

That finishes the proof that the symplectic group acts via generalized Mobius transformations
on the Siegel upper half space.

Now, let us see that the action is transitive. Indeed, let Z = X +¢Y € H,,. Then the matrices

o= (% =) n=(6 7)

are symplectic and it is readily verified that (hg) xil = X +4Y.
Finally, suppose that

A B
g= (C D) € Sp(2n,R)

stabilizes iI. Then il = (Ai + B)(Ci+ D)~! which is equivalent to B = —C and A = D.
Because ¢ is symplectic we obtain I = A*A + B*B and A'B = B!A. Therefore

. (At —_BY\ (A B\ (A'A+B'B A'B-BtA\ (I 0
99=\B* A J\-B A) T \B'A-4'B B'B+4'A) " \o I)°
whence g € SO(2n,R), and Stab(iI) C K. Vice versa, let

A B
g:(C D)EK.

From g'g = I we obtain
A'A+C'C=1=B'B+D'D, 0=A'B+C'D(= B'A+ D'O)
and because g is symplectic
AC = C*A, B'D = D'B, A'D-C'B=1.
In particular,
I=A'D—-C'B+iA'B+iC'D = AY(D +iB) + C'(Di — B) (6)

and
I=D'D+B'B=(D"+iB")(D —iB),




whence (D +iB)~! = D! — iB*. Using that relation in (6) we obtain
D' —iB' = A' + C*(iD — B)(D! —iB") = A* +iC"
so that A = D and B = —C'. That is equivalent to g x il = il.
This shows that H, is diffeomorphic to Sp(2n,R)/(Sp(2n,R) N SO(2n,R)) via the map
v:G/K — H,,gK — gxil.

By exercise 2) a maximal abelian subspace of p is given by

o= {(6‘ _OA> :A:diag(tl,...,tn).}.

Thus a maximal flat subspace of G/K is given by exp(a)K. Note that

exp(a) = {(diag(/\l(’)' 2 ) 0 1 )) Ay A > 0} .

o1
dlag()\—l, 009

Therefore,

plexp(a)K) = {gxil : g € expa}
= {idiag(\3,...,22) : \; > 0}

is a maximal flat subspace of H,, via the identification ¢ : G/K — H,.

Exercise 4 (Irreducible representations of s((2,C)). Let V' = C[X,Y] be the vector space of
polynomials in two variables. Let V,, denote the vector subspace of all homogeneous polynomials
of degree m. This has a basis given by the monomials X™, X™~1Y,..., Y™. We turn this vector
subspace into a module for s[(2,C) by defining a Lie algebra homomorphism ¢ : s{(2,C) — gl(V;,,)
in the following way

N () R A B (e s

Show that this defines an irreducible representation of s((2, C).

0 1 0 0 10
e=(p0) #=(0) 7= )

' _x92  p_ vy 9 g _x9 _y9
E'=pE)=Xgs, F=¢F)=Ygs H=eH)=Xz0-Ya0

Solution. Put

and




One easily checks that
[EvF]:Ha [E,H]:72Ev [FaH]:2Fa

and
[E/aF/] = Hlv [ElaH/] = 72E,7 [F/7H/] = 2F/a

so that ¢ defines a Lie algebra homomorphism.

It remains to be shown that ¢ is irreducible. Suppose that there is a non-trivial invariant
subspace 0 < V/ < V,,, and let v' € V’ be non-zero. Since degy (E'v) < degy v for all v € V,,,
there is a minimal & € N such that E’**1¢/ = 0. Then 0 # E’*v' € kerE' = CX™, i.e.
E'*y' = aX™ for some non-zero o € C. Now, applying F’ successively to aX™ yields the full
basis {X™, X™=1y ... XY™~ 1 Y™} which is contained in V' by invariance. However, that
implies that V' = V,,, contradicting our assumption.




