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Exercise Sheet 6

Exercise 1 (Maximal abelian subspaces and regular elements in sl(n,R)). Let g = sl(n,R). A
Cartan decomposition of g is given by g = k + p where p = {X ∈ sl(n,R) : X = Xt} and
k = {X ∈ sl(n,R) : X = −Xt}. We have seen in the lecture that

a =

diag(t1, . . . , tn) : tj ∈ R,
n∑

j=1

tj = 0

 .

is a maximal Abelian subspace of p.

(a) Prove (without appealing to the general theorem) that any maximal abelian subspace of p is
of the form SaS−1 where S ∈ SO(n).

(b) Show that X ∈ p is a regular element if and only if all of its eigenvalues are distinct.

Solution. (a) Let a′ be a maximal abelian subspace of p with basis {Y1, . . . , Yr}. All of
the Yi commute pairwise, whence there is an element S ∈ O(n) that diagonalises all
of them simultaneously, that is SYiS

−1 = Di for every i = 1, . . . , r where Di is some
traceless diagonal matrix. Because we are free to multiply S with diag(−1, 1, . . . , 1)
we may assume that S ∈ SO(n). It follows, that Sa′S−1 ⊆ a and due to maximality
Sa′S−1 = a.

(b) Let Cg(X) be the centraliser of X in g. Let X ∈ p be a regular element, so Cg(X)∩ p is
maximal abelian. By part (b) there is S ∈ SO(n) such that

a = S(Cg(X) ∩ p)S−1 = Cg(SXS−1) ∩ p. (1)

We have used here that K = SO(n) acts via the adjoint representation Ad(S)X =
SXS−1, which is by Lie algebra automorphisms preserving the Cartan decomposition.
Then SXS−1 = diag(λ1, . . . , λn) =: D is a diagonal matrix and λ1, . . . , λn are the
eigenvalues of X. Let Pij ∈ p denote the n × n-permutation-matrix that permutes the
canonical basis vectors ei ↔ ej for all i ̸= j and fixes the rest. Then

[D,Pij ](ek) = DPijek − PijDek = 0

for every k ̸= i, j,

[D,Pij ](ei) = DPijei − PijDei = (λj − λi)ej

and
[D,Pij ](ej) = DPijej − PijDei = (λi − λj)ej .
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Thus Pij ∈ Cg(D) ∩ p if λi = λj . However, Pij /∈ a which contradicts (1).

Conversely, let X ∈ p have distinct eigenvalues. By a theorem of the lecture we know
that X is contained in a maximal abelian subspace a′ and there is S ∈ SO(n) such
that Sa′S−1 = a. Note that D = diag(λ1, . . . , λn) = SXS−1 and λ1, . . . , λn are the
eigenvalues ofX. Obviously, Cg(D)∩p ⊇ a. Now, let Y ∈ Cg(D)∩p. For all i, j = 1, . . . , n
it holds

0 = [Y,D]ij = yij(λj − λi),

thus we obtain yijλi = yijλj for all i, j = 1, . . . , n. Since the eigenvalues of X are distinct
that implies that yij = 0 for i ̸= j, whence Cg(D) ∩ p ⊆ a.

Exercise 2 (Maximal abelian subspaces and regular elements in sp(2n,R)). Let g = sp(2n,R).
Recall that a Cartan decomposition of g is given by g = k+ p where

p =

{(
A B
B −A

)
: A = At, B = Bt

}
and

k =

{(
A B
−B A

)
: A = −At, B = Bt

}
.

(a) Define

a =

{(
A 0
0 −A

)
: A = diag(t1, . . . , tn).

}
.

Prove that A is a maximal abelian subspace of p.

(b) Show that X ∈ p is a regular element if and only if all of its eigenvalues are distinct and
non-zero.

Solution. (a) It is immediate to check that a is abelian. It remains to show that it is
maximal abelian. Let a′ ⊇ a be an abelian subspace of p containing a. Let Y =(
A B
B −A

)
∈ a′. Then for every X =

(
D 0
0 −D

)
∈ a we calculate

0 = [Y,X] =

(
AD −DA −BD −DB
BD +DB AD −DA

)
=

(
[A,D] −BD −DB

BD +DB [A,D]

)
.

=As in 1a) it follows that A is diagonal. Furthermore, BD +DB = 0 is equivalent to

bij(λi + λj) = 0 ∀i, j = 1, . . . , n

where D = diag(λ1, . . . , λn) so that B = 0 for an appropriate choice of λ1, . . . , λn. That
implies that Y ∈ a, whence a′ = a, and a is indeed maximal.

(b) The proof is essentially the same as for sl(n,R). Suppose X ∈ p is regular, that is
Cg(X)∩ p is maximal abelian. Then there is some k ∈ K := SO(2n,R)∩ Sp(2n,R) such
that

k(Cg(X) ∩ p)k−1 = Cg(kXk−1) ∩ p = a.
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Write

kXk−1 =

(
D 0
0 −D

)
with D = diag(λ1, . . . , λn). Note that λ1, . . . , λn,−λ1, . . . ,−λn are the eigenvalues of X.
It is easy to verify, that if λi = λj for i ̸= j then(

Pij 0
0 −Pij

)
∈ Cg(X) ∩ p

but not in a, and if λi = 0 then(
0 Eii

Eii 0

)
∈ Cg(X) ∩ p

but not in a. Both contradicts X being regular, so λ1, . . . , λn must be pairwise distinct
and non-zero.

Conversely, let X ∈ p have distinct and non-zero eigenvalues. By a theorem in the
lectures we know that X is contained in a maximal abelian subspace a′ and there is
k ∈ K such that ka′k−1 = a. Note that

kXk−1 =

(
D 0
0 −D

)
=: T

where D = diag(λ1, . . . , λn) and λ1, . . . , λn,−λ1, . . . ,−λn, are the eigenvalues of X.
Obviously, Cg(T ) ∩ p ⊇ a. Now, let Y ∈ Cg(T ) ∩ p. Then by the same computation as
in (a), we obtain yij = 0 for all i ̸= j, whence Cg(T ) ∩ p ⊆ a.

Exercise 3 (The Siegel upper half space). Let

Hn := {Z ∈ Cn×n : Z = Zt, Im(Z) is positive-definite}.

Find an explicit isomorphism between Hn and Sp(2n,R)/(SO(2n) ∩ Sp(2n,R)). Use this and the
previous exercise to construct a maximal flat of Hn.

Hint: Consider the map

φ : Sp(2n,R) → Hn,(
A B
C D

)
7→ (Ai+B) · (Ci+D)−1.

Solution. The space Hn is also called the Siegel upper half space. Before we solve the problem
we will show that the symplectic group G := Sp(2n,R) acts transitively via generalized Möbius
transformations (

A B
C D

)
⋆ Z := (AZ +B)(CZ +D)−1

on Hn and that i · In has stabilizer K := Sp(2n,R) ∩ SO(2n,R).
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In order to do so, let us first see that our definition makes sense, i.e. that (CZ +D) is indeed

invertible and g ⋆ Z ∈ Hn for every g =

(
A B
C D

)
∈ Sp(2n,R), Z ∈ Hn. Put

P := AZ +B, Q := CZ +D.

Recall that g ∈ Sp(2n,R) is equivalent to AtC = CtA, BtD = DtB and AtD − CtB = I.
Then

P tQ̄−QtP̄ = (ZAt +Bt)(CZ̄ +D)− (ZCt +Dt)(AZ̄ +B) (2)

= ZAtCZ̄ + ZAtD +BtCZ̄ +BtD (3)

− (ZCtAZ̄ + ZCtB +DtAZ̄ +DtB) (4)

= Z − Z̄ = 2i ImZ. (5)

Suppose ξ ∈ Cn is in the kernel of Q. Then

ξt ImZξ̄ = 1
2i

(
ξtP tQ̄ξ̄ − ξtQtP̄ ξ

)
= 0.

Since ImZ is positive definite, that implies that ξ = 0. Therefore, Q is invertible.

That g ⋆ Z is symmetric is equivalent to

P tQ = (ZtAt +Bt)(CZ +D) = (ZtCt +Dt)(AZ +B) = QtP

which follows again from g being symplectic.

Also

Im(g ⋆ Z) = 1
2i

(
PQ−1 − P̄ Q̄−1

)
= 1

2i

((
Q−1

)t
P t − P̄ Q̄−1

)
is positive definite if and only if

Qt Im(g ⋆ Z)Q̄ = 1
2i

(
Qt

(
Q−1

)t
P tQ̄−QtP̄ Q̄−1Q̄

)
= 1

2i

(
P tQ̄−QtP̄

)
= ImZ

is positive definite by (5).

Let us now verify that ⋆ is an action. It is immediate that I ⋆ Z = Z. Let

g =

(
A1 B1

C1 D1

)
, h =

(
A2 B2

C2 D2

)
∈ Sp(2n,R).
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Then

g ⋆ (h ⋆ Z) = ((A1A2Z +A1B2)(C2Z +D2)
−1 +B1)

· ((C1A2Z + C1B2)(C2Z +D2)
−1 +D1)

−1

= ((A1A2Z +A1B2) +B1(C2Z +D2))(C2Z +D2)
−1

· (C2Z +D2)((C1A2Z + C1B2) +D1C2Z +D1D2)
−1

= (g · h) ⋆ Z.

That finishes the proof that the symplectic group acts via generalized Möbius transformations
on the Siegel upper half space.

Now, let us see that the action is transitive. Indeed, let Z = X + iY ∈ Hn. Then the matrices

g =

(√
Y 0

0
√
Y −1

)
, h =

(
I X
0 I

)
are symplectic and it is readily verified that (hg) ⋆ iI = X + iY .

Finally, suppose that

g =

(
A B
C D

)
∈ Sp(2n,R)

stabilizes iI. Then iI = (Ai + B)(Ci + D)−1 which is equivalent to B = −C and A = D.
Because g is symplectic we obtain I = AtA+BtB and AtB = BtA. Therefore

gtg =

(
At −Bt

Bt At

)(
A B
−B A

)
=

(
AtA+BtB AtB −BtA
BtA−AtB BtB +AtA

)
=

(
I 0
0 I

)
,

whence g ∈ SO(2n,R), and Stab(iI) ⊆ K. Vice versa, let

g =

(
A B
C D

)
∈ K.

From gtg = I we obtain

AtA+ CtC = I = BtB +DtD, 0 = AtB + CtD(= BtA+DtC)

and because g is symplectic

AtC = CtA, BtD = DtB, AtD − CtB = I.

In particular,

I = AtD − CtB + iAtB + iCtD = At(D + iB) + Ct(Di−B) (6)

and
I = DtD +BtB = (Dt + iBt)(D − iB),
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whence (D + iB)−1 = Dt − iBt. Using that relation in (6) we obtain

Dt − iBt = At + Ct(iD −B)(Dt − iBt) = At + iCt

so that A = D and B = −C. That is equivalent to g ⋆ iI = iI.

This shows that Hn is diffeomorphic to Sp(2n,R)/(Sp(2n,R) ∩ SO(2n,R)) via the map

φ : G/K → Hn, gK 7→ g ⋆ iI.

By exercise 2) a maximal abelian subspace of p is given by

a =

{(
A 0
0 −A

)
: A = diag(t1, . . . , tn).

}
.

Thus a maximal flat subspace of G/K is given by exp(a)K. Note that

exp(a) =

{(
diag(λ1, . . . , λn) 0

0 diag( 1
λ1
, . . . , 1

λn
)

)
: λ1, . . . , λn > 0

}
.

Therefore,

φ(exp(a)K) = {g ⋆ iI : g ∈ exp a}
= {idiag(λ2

1, . . . , λ
2
n) : λi > 0}

is a maximal flat subspace of Hn via the identification φ : G/K → Hn.

Exercise 4 (Irreducible representations of sl(2,C)). Let V = C[X,Y ] be the vector space of
polynomials in two variables. Let Vm denote the vector subspace of all homogeneous polynomials
of degree m. This has a basis given by the monomials Xm, Xm−1Y, . . . , Y m. We turn this vector
subspace into a module for sl(2,C) by defining a Lie algebra homomorphism φ : sl(2,C) → gl(Vm)
in the following way

φ

((
0 1
0 0

))
= X

∂

∂Y
, φ

((
0 0
1 0

))
= Y

∂

∂X
, φ

((
1 0
0 −1

))
= X

∂

∂X
− Y

∂

∂Y
.

Show that this defines an irreducible representation of sl(2,C).

Solution. Put

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
,

and

E′ = φ(E) = X
∂

∂Y
, F ′ = φ(F ) = Y

∂

∂X
, H ′ = φ(H) = X

∂

∂X
− Y

∂

∂Y
.
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One easily checks that

[E,F ] = H, [E,H] = −2E, [F,H] = 2F,

and
[E′, F ′] = H ′, [E′, H ′] = −2E′, [F ′, H ′] = 2F ′,

so that φ defines a Lie algebra homomorphism.

It remains to be shown that φ is irreducible. Suppose that there is a non-trivial invariant
subspace 0 ⪇ V ′ ⪇ Vm, and let v′ ∈ V ′ be non-zero. Since degY (E

′v) < degY v for all v ∈ Vm,
there is a minimal k ∈ N such that E′k+1v′ = 0. Then 0 ̸= E′kv′ ∈ kerE′ = CXm, i.e.
E′kv′ = αXm for some non-zero α ∈ C. Now, applying F ′ successively to αXm yields the full
basis {Xm, Xm−1Y, . . . ,XY m−1, Y m} which is contained in V ′ by invariance. However, that
implies that V ′ = Vm contradicting our assumption.
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