Solutions to Exercise sheet 10:

- 1. Any continuous function f on [0, 1] is uniformly continuous and so for any $\epsilon > 0$, there exists N such that for any $n \ge N$, we have that $|\mu_n(f) \int f dx| < \epsilon$. And so, we have that $\mu_n \to^{w*} dx$ the Lebesgue measure on [0, 1].
- 2. See solution of Q2 of HS2023 Exercise sheet 11.
- 3. See solution of Q3 of HS2023 Exercise sheet 11.

This solution is not quite correct as it assumes that the compact, convex set A is *sequentially compact* which for general topological vector spaces doesn't follow from compactness. A remedy is the following:

For a fixed $v \in A$, let $J_n := \{T_{F_k}(v) : k \ge n\}$ and so any finite intersection of the J_n is non-empty. Thus $\bigcap_{i=1}^N \overline{J_i} \ne \emptyset$ and so, by compactness of A, we have $\bigcap_{i=1}^\infty \overline{J_i} \ne \emptyset$. Let $x \in \bigcap_{i=1}^\infty \overline{J_i}$. We want to show that gx = x for all $g \in G$.

Fix $g \in G$ and note that the function $v \mapsto ||gv - v||$ is continuous on A. If $||gx - x|| = c \neq 0$, then the set $O := \{v \in A : c/2 < ||gv - v|| < 2c\}$ is open and $x \in O$. But the computation in the solution shows that $||gT_{F_n}(v) - T_{F_n}v|| \to 0$ as $n \to \infty$ and so $\{||gy - y|| : y \in J_n\} \cap O = \emptyset$ for n large enough which contradicts $x \in \overline{J_n}$.

Remark: The above trick recovers a form of convergence in arbitrary compact sets and is axiomatized in the notion of *nets*. Even though it is in general false that a compact set is sequentially compact, it is true that a set is compact if and only if every net has a convergent subnet. For more info, see section 4 of https://www.mathematik.huberlin.de/ wendl/Sommer2017/Topologie1/nets.pdf