Exercise Sheet 11

- 1. Let $\alpha \notin \mathbb{Q}/\mathbb{Z}$ and let $T : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ send $x \mapsto x + \alpha$. Show that the uniform Lebesgue measure on \mathbb{R}/\mathbb{Z} is the unique *T*-invariant probability measure on \mathbb{R}/\mathbb{Z} .
- 2. Let H < G be groups and let G be a meanable. Show that H is also a meanable.
- 3. Show that $c_0(\mathbb{N})$ with the sup norm is not the dual of any normed space.
- 4. Let $\mathcal{M} \subset (\ell^{\infty}(\mathbb{N}))^*$ be the set of means, i.e. the set of elements $v \in (\ell^{\infty}(\mathbb{N}))^*$ such that $\forall f = (f_i)_{i=1}^{\infty} \in \ell^{\infty}$ with $f_i \geq 0$, $v(f) \geq 0$ and v((1,1,1,...)) = 1. Characterize the extremal points of \mathcal{M} . Show that there are extreme points m so that m(f) = 0 for any function f with finite support.