Exercise Sheet 12

1. Let $\delta > 0$ and $f_{\delta} : \mathbb{R} \to \mathbb{R}$ be defined as

$$f_{\delta}(x) = \begin{cases} 1 \text{ for } x \in [-1, 1] \\ -\delta^{-1}|x| + 1 + \delta^{-1} \text{ for } x \in [-1 - \delta, -1] \cup [1, 1 + \delta] \\ 0 \text{ for } x \notin [-1 - \delta, 1 + \delta] \end{cases}$$

Compute \hat{f}_{δ} and show that $\lim_{\delta \to 0} \|\hat{f}_{\delta}\|_{1} = \infty$

- 2. Show that there are $f \in C_{00}(\mathbb{R})$ with $\hat{f} \notin L^1(\mathbb{R})$. Proceed by contradiction. Assume that $\forall f \in C([-2,2])$ we have $\hat{f} \in L^1(\mathbb{R})$. Apply the closed graph theorem to obtain a contradiction using exercise 1.
- 3. Let $f \in L^2(\mathbb{R}^n)$. For R > 0, show that $f\chi_{\leq R} \in L^1(\mathbb{R}^n)$ and show that as $R \to \infty$

$$f\chi_{\langle R} \to \mathcal{F}f$$
 in $L^2(\mathbb{R}^n)$

where $\mathcal{F}f$ is the L^2 -Fourier transform.

4. For an $f_1, f_2, f_3 \in L^1(\mathbb{R}^n)$ show that $f_1 * f_2 = f_2 * f_1$ and

$$(f_1 * f_2) * f_3 = f_1 * (f_2 * f_3).$$