Exercise Sheet 13

- 1. Show that if $f, g \in L^1(\mathbb{R}^n)$ then $\widehat{f * g} = \widehat{f}\widehat{g}$.
- 2. Show that if $f \in L^1(\mathbb{R}^n)$ and f * f = f then $f \equiv 0$.
- 3. Show that if r > 0 and $f(x) = |x|^r$ for $x \in \mathbb{R}$ then the weak derivative of f is given by $(d/dx)_w f = r \operatorname{sgn}(x) |x|^{r-1}$, where $\operatorname{sgn}(x)$ is the sign of x.
- 4. Show that if $f, g \in W^{k,2}(\Omega)$ then the inner product given by

$$\langle f,g \rangle := \sum_{|\alpha| \le k} \langle D_w^{\alpha} f, D_w^{\alpha} g \rangle_{L^2}$$

is well-defined and the corresponding norm is equivalent to $\|\cdot\|_{k,2}$.