Exercise Sheet 2

- Let $(V, \|\cdot\|)$ be a normed space.
 - 1. Let $W \subset V$ be a subspace. For any $v \in V$ define

$$d(v, W) := \inf_{w \in W} \|v - w\|$$

Assume $W \subset V$ is closed and $W \neq V$. Show that for all $\epsilon > 0$ there exists $v \in V$ with ||v|| = 1 and $d(v, W) > 1 - \epsilon$.

- 2. Let $W \subset V$ be a subspace. Define ||v + W|| := d(v, W) for all $v + W \in V/W$.
 - (a) Show that this defines a norm on V/W iff W is closed in V.
 - (b) Show that if V is Banach and W is closed in V then V/W is Banach.
 - (c) Prove: If W is closed and $W \neq V$ then the canonical projection

 $\pi: V \to V/W$

satisfies $\|\pi\| = 1$.

3. Let \mathcal{H} be a Hilbert space over $\mathbb{K} = \mathbb{R}, \mathbb{C}$ and $S := \{v \in \mathcal{H} : ||v|| = 1\}$. Show that the unitary group $U(\mathcal{H})$ acts transitively on S. What can you say about the stabilizer of a point $v \in S$? Let $n \in \mathbb{N}, n \geq 1$ and

 $\mathcal{F}(n) := \{ (v_1, ..., v_n) \in \mathcal{H}^n : v_1, ..., v_n \text{ form an orthonormal set} \}.$

Assume $\mathcal{F}(n) \neq \emptyset$. Show that $U(\mathcal{H})$ acts transitively on $\mathcal{F}(n)$.

- 4. Let $S := \{v \in V : ||v|| = 1\}$. Show that the following are equivalent:
 - (a) $\dim(V) < +\infty$.
 - (b) S is compact.

Hint: use exercise 1 to prove (b) implies (a).