Exercise Sheet 6

1. Let E be a Banach space and $B^* \subset E^*$ a subset such that $\forall v \in E$,

 $\{f(u): f \in B^*\} \subset \mathbb{K}$

is bounded. Show that B^* is bounded.

- 2. Let E,F be Banach spaces and $f:E\times F\to \mathbb{K}$ a bilinear form such that
 - (a) $\forall v \in E, (w \in F) \mapsto f(v, w)$ is continuous.
 - (b) $\forall w \in F, (v \in E) \mapsto f(v, w)$ is continuous.

Show that $\exists C > 0$ such that

$$|f(v,w)| \le C ||v|| ||w||.$$

Hint: Use Exercise 1.

3. Show the implication (3) \implies (2) in the open mapping theorem. (Theorem 4.19)