Exercise Sheet 7

- 1. Let $E \subset V$ be a closed subspace of a Banach space V. Prove: There exists a closed complement to E if and only if there exists a continuous linear map $P \colon V \to V$ with $P^2 = P$ and $\operatorname{im}(P) = E$.
- 2. Let $(V, ||\cdot||_V)$ and $(W, ||\cdot||_W)$ be Banach spaces and $T: V \to W$ a surjective, linear, and continuous map. Show that the following are equivalent:
 - (a) The closed subspace ker(T) admits a closed complement in V.
 - (b) There is a linear, continuous map $S: W \to V$ with $T \circ S = \mathrm{id}_W$.
- 3. Show that the subspaces

$$V := \{ f \in \ell^1(\mathbb{N}) : f(2n) = 0 \ \forall n \geqslant 0 \}$$

$$W := \{ f \in \ell^1(\mathbb{N}) : f(2n-1) = nf(2n) \ \forall n \geqslant 1 \}$$

are closed in $\ell^1(\mathbb{N})$ while V+W is not closed.

Hint: Show $V + W \supset c_{00}(\mathbb{N})$.

- 4. Show that there is a bounded set function $p \colon \mathscr{P}(\mathbb{N}) \to \mathbb{R}$ such that
 - (a) $p(\mathbb{N}) = 1$,
 - (b) $p(A \cup B) = p(A) + p(B)$ whenever $A \cap B$ is finite.