Exercise Sheet 9

- 1. Show that if $(V, \|\cdot\|)$ is a normed space such that V^* is separable, then the weak topology on $B_{\leq 1}^V(0)$ is metrizable.
- 2. Define $\lambda : \ell^1(\mathbb{N}) \to c_0(\mathbb{N})^*$ by

$$\lambda(f)(g) = \sum_{n=0}^{\infty} f(n)g(n) \,.$$

Show that λ is a bijective isometry.

- 3. Let $(V, \|\cdot\|)$ be a normed space. Show that any linear form $f : V^* \to \mathbb{K}$ that is continuous with respect to the weak^{*} topology is of the form f(h) = h(v) for $h \in V^*$ for some $v \in V$.
- 4. For a set S, define $\mathbb{R}_{\geq 0}^{(S)} := \{\lambda : S \to \mathbb{R}_{\geq 0}, \lambda \text{ has finite support}\}$. Show that the convex hull of a subset $A \subset V$ is given by

$$\operatorname{conv}(A) = \left\{ \sum_{a \in A} \lambda(a)a : \lambda \in \mathbb{R}^{(A)}_{\geq 0}, \sum_{a \in A} \lambda(a) = 1 \right\} \,.$$