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Exercise Sheet 1 - Solutions

1. Show Lemma I.3.

Solution: Note that the direct product V; x V5 of two normed spaces is again a normed space

with the norm ||(v1, v2)|| := [|[v1]lv, + ||v2]|v, (and this norm induces the product topology).
Thus a sequence ((v1,n,v2.n))n is Cauchy if and only if the sequences (v1 ,,)p and (v ), are
Cauchy.

Let vy, vs, w1, we € V. Then
[[(w1 +w2) = (v1 +v2)|| = [[(w1 —v1) + (w2 — v2)|| < [Jwr — V1] + [[w2 — va|

by the triangle inequality. Thus for any Cauchy sequence ((v1 ,,v2.,))s the sequence given
by adding all the vectors (vi , + v2,)n is Cauchy. Thus addition is continuous.

Let A, A2 € K and vy,v9 € V. Then
[[Ad1v1 = Agua|| = [[(A1 = A2)vr — Ao (vr — va)[| < [[valf - [A1 = Aa| + [Ao] - [[o1 — va].

Using an argument similar to the one above, one can use this inequality to prove that mul-
tiplication is continuous.

2. Let S be a Hilbert space with norm || - ||.

(a) Prove: For all € > 0, there exists 6 > 0 such that whenever ||z|| < 1 and ||y|| < 1 satisfy

||z — y|| > € then ||Z£¥|| < 1 — 6. Compute § as a function of e.

(b) Draw a picture of this geometric property.
Solution:

(a) The parallelogram identity gives

2 2

rry <1-é/4

= /2P + i) - || 25

A possible choice is €(§) =1 — /1 — €2/4.
(b)
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3. Let 4% be a Hilbert space, z,y,z € H#, ¢c: R — 5, t — tx + (1 — t)y a parametrization of
the line through 2 and y, and f(t) := ||z — c(t)||>. Assuming = # y, show that f is strictly
convex.

Solution: The sesquilinearity of the inner product gives
F#&) = llz = yl* + 2tRe(z — y,y — a) + ||y — .
Thus f"(t) = 2|ly — z||> > 0 for all t € R, so f is strictly convex.

4. Let C' C 4 be a closed, convex subset of a Hilbert space, and set d(z,C) := inf{||z — y|| :
y € C} for all x € 5. Show that for each x € S, there is a unique point p(z) € C which
satisfies d(z, p(z)) = d(z, C).

Hint: Let (x,)n be a sequence in C' with d(z,z,) — d(z,C) as n — oco. Prove by using
exercise 2, that any such sequence is Cauchy. Use exercise 3 to prove that any two points
21,9 which satisfy d(z,x1) = d(z, 22) = d(z, C) are equal.

Solution: We first prove the existence of such a point. By shifting x and C' if necessary, we
are free to assume = = 0. Let (z,,),, be any sequence of vectors z,, € C with d(0, z,,) — d(0,C)
as n — 00. Suppose this sequence is not Cauchy. Let € > 0 such that for all N € N there
exist n,m > N with ||z, — 2,|| > €. Let 6 > 0 and N > 0 such that d(0,z,) — d(0,C) < §
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for all n > N. Pick n,m € N with ||z, — x;n|| > € and n,m > N. Because C is convex we
have d(0,C) < |[£2E2m ||, The parallelogram identity gives

2 2

In T < (d(0,C) +6)% — /4.

2

Ty — Tm

d(0,0)? < 5

1
= 5 Ul + llzm|I?) -

By letting § — 0, we arrive at 0 < —e2/4. This contradiction proves that the sequence is
Cauchy.

Suppose there exist two distinct points x1, ze € C with d(z, x1) = d(x, z2) = d(z, C). We get
d(m, 7 ;352) <d(z,C)

from exercise 3. This contradicts the definition of d(z,C) since 21322 € C. Thus there can
never be two distinct points satisfying this relation.

5. Verify that A“(R) is a Banach space (see Example 1.11).

Solution: We only prove that the space A”(R) is complete. Let (f,,), be a Cauchy sequence
in A*(R). For each z € R the limit lim,,_,o fn(x) exists because |fn(x) — f(z)] < ||f0 —
Jml||p=. Define the function f(z) := lim, o0 fn(z).

We prove f € A®(R). Because (fy)n is a Cauchy sequence, there exists C' > 0 with || f, || o <
C for all n € N. In particular, for all z,y € R and n € N we have |f,,(z) — fn(y)| < Clz —y|*.
Letting n — oo, we get the inequality |f(z) — f(y)| < Clx — y|*. By a similar argument, we
get |f(x)| < C for all z € R. Thus f € A”(R).

We prove ||f — fallpe — 0 as n — oo. Let € > 0. There exists N > 0 such that for all
n,m = N we have |[f, — fi|[pe < €. Consider x,y,z € R with y # 2, then there exists M
such that for all m > M we have |f(z) — fm(2)] < € and |f(y) — fm(v)| < €|y — z|* and
|f(2) — fm(2)| < €ly — 2|*. For all m > N and m > max(N, M) we get

[(f(y) = fa()) = (f(2) = fu(2))]

[f(z) = ful2)| +

< [f(2) = fu (@) + [far (@) = ful(2)]

ly — 2|

LU = fu @) = (F(2) = fu(2)]
ly — 2|

LU (y) = foly)) = (Fur(z) = fn(2))]
ly — 2|

< be.

Taking the supremum yields
I1f - an/\" < e

for all n > N. Hence |[|f — ful[p> — 0 as n — oo.
6. Let a > 1. Show that any f: R — R satisfying
|f(z1) — flz2)]

sup ————"~ < o0
T1#T2 |.731 _x2|a
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is constant.

Solution: Let C := sup,, 4, % and x < y. Let n € N. Define the evenly spaced

numbers x = xg < 1 < --- < x, = y. Then

n

|f(z) = f(y)] < Z |f(zio1) — f(xs)] < ZC(y —2)*n" % =C(y — x)*n' >,

i=1
As n — oo, this inequality yields f(z) = f(y). Hence f is constant.

One can define \”(X) for any metric space (X, d). Give a simple geometric condition on the
metric space (X, d), which implies that for all a > 1 the space \®(X) consists only of the
constant functions.



