Solutions to Exercise sheet 5:

1. By Lemma 3.24 of the script if suffices to show that the second condition is equivalent to

$$
\langle T_K f, f \rangle \ge 0.
$$

Write $f = \sum a_k f_k$. Thus

$$
\langle T_K f, f \rangle = \sum a_k^2 \langle T_K f_k, f_k \rangle = \sum a_k^2 \lambda_k \ge 0.
$$

The other direction follows as

$$
\lambda_k = \langle T_K f_k, f_k \rangle \ge 0.
$$

2. Consider $\mathbb{R}^{(X)}$ and $\langle \cdot, \cdot \rangle$ as in the hint. Note that the assumptions on K imply

$$
\langle f,g\rangle = \langle g,f\rangle \ge 0.
$$

We also have the Cauchy-Schwarz inequality since for any $t \in \mathbb{R}$,

$$
0 \le \langle tf+g, tf+g \rangle = t^2 \langle f, f \rangle + 2t \langle f, g \rangle + \langle g, g \rangle = p(t)
$$

As the quadratic polynomial $p(t)$ is always non-negative, its discriminant is non-positive: $\langle f, g \rangle^2 - \langle f, f \rangle \langle g, g \rangle \leq 0$.

However, $\mathbb{R}^{(X)}$ need not be an inner product space as one could have $\langle f, f \rangle = 0$ for a non-zero f and it need not be complete.

Consider C to be the set of Cauchy sequences in $\mathbb{R}^{(X)}$, i.e.

$$
\mathcal{C} := \{ (f_n)_{n=1}^{\infty} : f_n \in \mathbb{R}^{(X)}, \forall \epsilon > 0 \exists N \forall m, n > N(\langle f_n - f_m, f_n - f_m \rangle < \epsilon^2) \}
$$

Let C_0 be the set of sequences in $\mathbb{R}^{(X)}$ converging to 0, i.e.

$$
\mathcal{C}_0 := \{ (f_n)_{n=1}^{\infty} : f_n \in \mathbb{R}^{(X)}, \forall \epsilon > 0 \exists N \forall n > N (\langle f_n, f_n \rangle < \epsilon^2) \}
$$

For two sequences $F = (f_n)_{n=1}^{\infty}, G = (g_n)_{n=1}^{\infty} \in \mathcal{C}$ we define

$$
\langle F, G \rangle = \lim_{n \to \infty} \langle f_n, g_n \rangle.
$$

(Check that the above limit exists!)

Let us denote by c the map $c : \mathbb{R}^{(X)} \to \mathcal{C}$ sending $f \in \mathbb{R}^{(X)}$ to the constant sequence $(f, f, f, ...) \in \mathcal{C}$. Note that

$$
\langle f, g \rangle = \langle c(f), c(g) \rangle.
$$

Note that C and C_0 are R-vector spaces and that $F \in C_0 \iff \langle F, F \rangle = 0$. Now $(\mathcal{C}/\mathcal{C}_0,\langle\cdot,\cdot\rangle)$ forms our Hilbert space $\mathcal H$ as:

(a) $\langle \cdot, \cdot \rangle$ is bilinear and symmetric by definition.

- (b) $\langle \cdot, \cdot \rangle$ is well-defined as $\langle F, G \rangle = \langle F + Z_1, G + Z_2 \rangle$ for $Z_1, Z_2 \in \mathcal{C}_0$. This uses Cauchy-Schwarz.
- (c) $\langle \cdot, \cdot \rangle$ is positive-definite as $\langle F, F \rangle = 0$ implies $F \in \mathcal{C}_0$ implies $F \equiv 0$ in $\mathcal{C}/\mathcal{C}_0$.
- (d) $\langle \cdot, \cdot \rangle$ induces a complete norm on $\mathcal{C}/\mathcal{C}_0$.

Define $\phi: X \to \mathbb{R}^{(X)}$ by

$$
x \mapsto f_x(y) := \begin{cases} 1, & \text{if } y = x, \\ 0, & \text{otherwise.} \end{cases}
$$

Let φ be the composition

$$
X \xrightarrow{\phi} \mathbb{R}^{(X)} \xrightarrow{c} \mathcal{C} \to \mathcal{C}/\mathcal{C}_0 = \mathcal{H}
$$

Check that this works!