Exercise Sheet 1

Due: To be handed in before 30.09.2024 at 12:15.

1. Arc length

Let $c \in C^1([0,1],\mathbb{R}^n)$. Show that the metric definition of arc length coincides with $L(c) := \int_0^1 |c'(t)| dt$.

2. Osculating circle

Let $c \in C^2(I, \mathbb{R}^2)$ be a curve parametrized by arc length. A circle $S \subset \mathbb{R}^2$ with center $q \in \mathbb{R}^2$ and radius $r \ge 0$ is called *osculating circle* to c at the point $t \in I$ if S coincides with c at the point c(t) up to second order.

Show that if $c''(t) \neq 0$ then there is a unique osculating circle S to c at the point t. Find q, r and a parametrization α of S with $\alpha(t) = c(t), \alpha'(t) = c'(t)$ and $\alpha''(t) = c''(t)$.

3. Curvature and torsion

a) Let $c \in C^3(I, \mathbb{R}^3)$ be a Frenet curve. Show that for the curvature κ and the torsion τ of c it holds that:

$$\kappa = \frac{\left|c' \times c''\right|}{\left|c'\right|^3} \quad \text{and} \quad \tau = \frac{\det\left(c',c'',c'''\right)}{\left|c' \times c''\right|^2}.$$

b) Let r, h > 0 and denote by σ the following reflection of \mathbb{R}^3 :

$$\sigma: \mathbb{R}^3 \to \mathbb{R}^3, \, (x, y, z) \mapsto (x, y, -z).$$

Compute the curvature $\kappa(t)$ and the torsion $\tau(t)$ of the following Helixes:

$$c_1(t) = \left(r\cos t, r\sin t, \frac{h}{2\pi}t\right),$$

$$c_2(t) = c_1(-t),$$

$$c_3(t) = \sigma \circ c_1(t).$$

4. Length of curve after normal perturbation

Let $c: [0, l] \to \mathbb{R}^2$ (l > 0) be a C^2 -closed curve of constant speed one with Frenet frame (c', n). For $\delta \in \mathbb{R}$, consider the parallel curve $c_{\delta}: [0, l] \to \mathbb{R}^2$ defined by $c_{\delta}(s) := c(s) + \delta n(s)$ for all $s \in [0, l]$. Show that there exists an $\varepsilon > 0$ such that if $|\delta| \le \varepsilon$, then the length $L(c_{\delta})$ can be expressed solely in terms of l, δ , and the rotation index ρ_c of c.