Exercise Sheet 10

Due: To be handed in before 02.12.2024 at 12:15.

1. Embeddings

- a) Find an embedding $S^k \times \mathbb{R}^l \hookrightarrow \mathbb{R}^{k+l}$, where $k, l \ge 1$.
- b) Prove that if the *m*-dimensional manifold M is a product of spheres, then there is an embedding $M \hookrightarrow \mathbb{R}^{m+1}$.

2. The Complex Projective Space

Consider the following equivalence relation on the complex vector space \mathbb{C}^{n+1} :

 $x \sim y \iff x = \lambda y \text{ for some } \lambda \in \mathbb{C} \setminus \{0\}.$

The quotient space $\mathbb{CP}^n := (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$, equipped with the quotient topology, is called *complex projective space*.

a) Find a differentiable structure on the topological space \mathbb{CP}^n such that the canonical projection

$$\pi\colon \mathbb{C}^{n+1}\setminus\{0\}\longrightarrow \mathbb{C}\mathbb{P}^n$$

is a differentiable map.

b) Prove that S^2 and \mathbb{CP}^1 are diffeomorphic.

3. Regular Values

Let M and N be manifolds of the same dimension with M compact and let $f: M \to N$ be a smooth map. Let $y \in N$ be a regular value of f. Prove the following statements.

- a) The preimage $f^{-1}(y)$ has only finitely many elements.
- b) The number of elements in the fiber over y is locally constant in N. That is, for every regular value $y \in N$ there exists a neighborhood V of y, such that all $y' \in V$ are regular values and $\#f^{-1}(y) = \#f^{-1}(y')$.
- c) If the space of regular values is connected, then $\#f^{-1}(y)$ is constant for all regular values.