Exercise Sheet 13

1. Pullback

Let M, N be smooth manifolds and $F: N \to M$ be a smooth map. For $\omega \in \Omega^s(M)$ and $\theta \in \Omega^t(M)$ prove that

- a) $F^*(\omega \wedge \theta) = F^*\omega \wedge F^*\theta$,
- b) $F^*(d\omega) = d(F^*\omega).$

2. Volume Forms

Let M be an *m*-dimensional manifold. A volume form ω on M is a nowhere vanishing *m*-form, that is, $\omega_p \neq 0$ $(\in \Lambda_m(TM_p^*))$ for all $p \in M$.

Prove that there is a volume form on M if and only if M is orientable.

3.

Let M and N be two compact, oriented smooth manifolds of dimension m. Show that if $F, G: M \to N$ are smoothly homotopic maps and $\omega \in \Omega^m(N)$ is an *m*-form on N, then

$$\int_M F^*\omega = \int_M G^*\omega.$$