Exercise Sheet 2

Due: To be handed in before 07.10.2024 at 12:15.

1. Characterization of convex curves

Let $c \in C^2([0, L], \mathbb{R}^2)$ be a simply C^2 -closed curve parametrized by arc-length. Show that the following two statements are equivalent:

- (i) The curvature $\kappa_{\rm or}$ of c doesn't change sign, that is, $\kappa_{\rm or}(t) \ge 0$ for all $t \in [0, L]$ or $\kappa_{\rm or}(t) \le 0$ for all $t \in [0, L]$.
- (ii) The curve c is *convex*, that is, the image of c is the boundary of a convex subset $C \subset \mathbb{R}^2$.

2. Submanifolds

Prove that the following matrix groups are submanifolds of $\mathbb{R}^{n \times n}$ and compute their dimensions:

- (i) $\operatorname{SL}(n,\mathbb{R}) := \{A \in \mathbb{R}^{n \times n} : \det A = 1\},\$
- (ii) $SO(n, \mathbb{R}) := \{ A \in GL(n, \mathbb{R}) : A^{-1} = A^{T}, \det A = 1 \}.$

3. Tangent bundle

Let $M \subset \mathbb{R}^n$ be an *m*-dimensional submanifold. Show that the *tangent bundle*

$$TM := \bigcup_{p \in M} \{p\} \times TM_p$$

is a 2m-dimensional submanifold of \mathbb{R}^{2n} .