Exercise Sheet 4

Due: To be handed in before 21.10.2024 at 12:15.

1. Tubular surface

Let $c : [0, L] \to \mathbb{R}^3$ be a smooth Frenet curve, parametrized by arc-length with normal vector n and binormal vector b. Show that if r > 0 is sufficiently small, then the tubular surface $f : [0, L] \times \mathbb{R} \to \mathbb{R}^3$ around c defined by

$$f(t,\varphi) := c(t) + r(\cos\varphi \cdot n(t) + \sin\varphi \cdot b(t))$$

is regular and the area of $f|_{[0,L]\times[0,2\pi)}$ equals $2\pi rL$.

2. Torus

Let a > r > 0 and $f : \mathbb{R}^2 \to \mathbb{R}^3$ be the parametrization of a torus T, defined as

$$f(x,y) := \left((a + r\cos x)\cos y, (a + r\cos x)\sin y, r\sin x \right).$$

Prove that:

- (a) If a geodesic is at some point tangential to the circle $x = \frac{\pi}{2}$ then it must be contained in the region of T with $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.
- (b) Suppose that a geodesic $c \colon \mathbb{R} \to T$, which crosses the circle x = 0 with an angle $\theta \in (0, \frac{\pi}{2})$, also intersects the circle $x = \pi$, then

$$\cos\theta \leq \frac{a-r}{a+r}$$

3. Energy

Let $M \subset \mathbb{R}^n$ be a submanifold, $c_0 : [a, b] \to M$ a smooth curve and

$$E(c_0) := \frac{1}{2} \int_a^b |\dot{c}_0(t)|^2 \, dt$$

its energy.

- (a) Show that $L(c_0)^2 \leq 2(b-a)E(c_0)$ with an equality if and only if c_0 is parametrized proportionally to arc-length.
- (b) Compute $\frac{d}{ds}|_{s=0} E(c_s)$ for a smooth variation $\{c_s\}_{s\in(-\varepsilon,\varepsilon)}$ of c_0 in M.
- (c) Characterize geodesics in M using the energy.