Solution 10

1. Embeddings

- a) Find an embedding $S^k \times \mathbb{R}^l \hookrightarrow \mathbb{R}^{k+l}$, where $k, l \ge 1$.
- b) Prove that if the *m*-dimensional manifold M is a product of spheres, then there is an embedding $M \hookrightarrow \mathbb{R}^{m+1}$.

Solution:

a) We consider first the case l = 1. Define $\iota: S^k \times \mathbb{R} \hookrightarrow \mathbb{R}^{k+1}$, $(x, t) \mapsto xe^t$. It's a homeomorphism onto its image. We claim that it's an embedding.

A smooth atlas on $S^k \subset \mathbb{R}^{k+1}$ can be constructed using the 2k + 2 open hemispheres that cover the sphere in the following way: for i = 1, ..., k + 1 let

$$U_i^+ := \{ p \in S^k : x^i(p) > 0 \}$$
$$U_i^- := \{ p \in S^k : x^i(p) < 0 \}$$

and define $\varphi_i^{\pm} \colon U_i^{\pm} \to U_0(1) \subset \mathbb{R}^k$ by

$$\varphi_i^{\pm}(x^1,\ldots,x^{k+1})\coloneqq (x^1,\ldots,\widehat{x^i},\ldots,x^{k+1}),$$

where $U_0(1)$ denotes the open unit ball and $\widehat{x^i}$ means that that coordinate is omitted.

For example, given $(x^2, \ldots, x^{k+1}) \in \varphi_1^+(U_1^+)$, the inverse is given by

$$(\varphi_1^+)^{-1}(x^2,\ldots,x^{k+1}) = \left(\sqrt{1-\sum_{i=2}^{k+1}(x^i)^2},x^2,\ldots,x^{k+1}\right).$$

Notice that $x^i \neq 0$ implies that $\sum_{j\neq i} (x^j)^2 < 1$, and that $\sqrt{\cdot}$ is smooth on $\mathbb{R}_{>0}$.

We endow $S^k \times \mathbb{R}$ with the product atlas $\{(\varphi_i^{\pm} \times \mathrm{id}_{\mathbb{R}}, U_i^{\pm} \times \mathbb{R})\}_i$, then it's a computation to show that ι is smooth. For $(x_0, t_0) \in S^k \times \mathbb{R}$ and φ a chart at (x_0, t_0) , the injectivity (in fact, bijectivity since the dimensions coincide) of $d_{\iota_{x_0}, t_0}$ follows from the injectivity of $d(\iota \circ \varphi^{-1})_{\varphi(x_0, t_0)}$ as

$$d\iota_{(x_0,t_0)} = d(\iota \circ \varphi^{-1})_{\varphi(x_0,t_0)} \circ d\varphi_{x_0,t_0}$$

and $d\varphi_{x_0,t_0}$ is a linear isomorphism.

In general $f: S^k \times \mathbb{R}^l \hookrightarrow \mathbb{R}^{k+l}, (x, t_1, \dots, t_l) \mapsto (\iota(x, t_1), t_2, \dots, t_l)$ is an embedding.

b) We proceed by induction on the number of spheres n which form M. The inclusion of the sphere $S^m \subset \mathbb{R}^{m+1}$ is an embedding.

Now let $n \geq 2$ and suppose that $M := \prod_{i=1}^{n} S^{m_i}$ and $m := \sum_{i=1}^{n} m_i$ with $m_i \geq 1$. The induction hypothesis gives an embedding $g : \prod_{i=2}^{n} S^{m_i} \hookrightarrow \mathbb{R}^{m-m_1+1}$ and from a) there is and embedding $f : S^{m_1} \times \mathbb{R}^{m-m_1+1} \hookrightarrow \mathbb{R}^{m+1}$. As products and compositions of embeddings are embeddings, the map

$$h \coloneqq f \circ (\mathrm{id}_{S^{m_1}} \times g) \colon M \hookrightarrow \mathbb{R}^{m+1}$$
$$(x_1, \dots, x_n) \mapsto f(x_1, g(x_2, \dots, x_n))$$

2. The Complex Projective Space

Consider the following equivalence relation on the complex vector space \mathbb{C}^{n+1} :

 $x \sim y \iff x = \lambda y \text{ for some } \lambda \in \mathbb{C} \setminus \{0\}.$

The quotient space $\mathbb{CP}^n := (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$, equipped with the quotient topology, is called *complex projective space*.

a) Find a differentiable structure on the topological space \mathbb{CP}^n such that the canonical projection

$$\pi \colon \mathbb{C}^{n+1} \setminus \{0\} \longrightarrow \mathbb{C}\mathbb{P}^n$$

is a differentiable map.

b) Prove that S^2 and \mathbb{CP}^1 are diffeomorphic.

Solution:

a) We use homogeneous coordinates $[z_0 : \ldots : z_n]$ on \mathbb{CP}^n . Define an atlas $\mathcal{A} := \{(U_i, \phi_i)\}_{i=0}^n$ by

$$U_i \coloneqq \{ [z_0 : \ldots : z_n] \in \mathbb{CP}^n : z_i \neq 0] \}$$

and $\phi_i \colon U_i \to \mathbb{C}^n$ with

$$\phi_i([z_0:\ldots:z_n]) := \frac{1}{z_i}(z_0,\ldots,z_{i-1},z_{i+1},\ldots,z_n).$$

The sets U_i 's are open and $\mathbb{CP}^n = \bigcup_{i=0}^n U_i$. Moreover the ϕ_i 's are homeomorphisms with

 $\phi_i^{-1}(z_1,\ldots,z_n) = [z_1:\ldots:z_i:1:z_{i+1}:\ldots:z_n].$

The change of coordinates for $U_i \cap U_j$ is given by

$$\phi_i \circ \phi_j^{-1}(z_1, \dots, z_n) = \left(\frac{z_1}{z_i}, \dots, \frac{z_j}{z_i}, \frac{1}{z_i}, \frac{z_{j+1}}{z_i}, \dots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \dots, \frac{z_n}{z_i}\right),$$

which is smooth. Hence the atlas \mathcal{A} defines a C^{∞} -structure on \mathbb{CP}^n .

For the projection it holds that

$$\phi_i \circ \pi(z_0, \dots, z_n) = \frac{1}{z_i}(z_0, \dots, z_{i-1}, z_{i+1}, \dots, z_n),$$

whenever $\pi(z_0, \ldots, z_n) \in U_i$, and therefore $\pi \in C^{\infty}$.

b) On S^2 we consider the (surjective) stereographic charts

$$\phi_N \colon S^2 \setminus \{N\} \to \mathbb{R}^2, \qquad \phi_N(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

$$\phi_S \colon S^2 \setminus \{S\} \to \mathbb{R}^2, \qquad \phi_S(x, y, z) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$$

Notice that

$$\phi_N^{-1}(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$$

If we consider $S^2 \subset \mathbb{C} \times \mathbb{R}$, then for $z, w \in \mathbb{C}$ and $t \in \mathbb{R}$ we can write

$$\phi_N^{-1}(z) = \left(\frac{2z}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right)$$

and

$$\phi_S(w,t) = \frac{w}{1+t}.$$

Define $\Phi \colon \mathbb{CP}^1 \to S^2$ by

$$\Phi([z_0:z_1]) \coloneqq \begin{cases} \phi_N^{-1}(\frac{z_0}{z_1}), & \text{if } z_1 \neq 0, \\ N, & \text{if } z_1 = 0. \end{cases}$$

Notice that Φ is a homeomorphism, moreover $\Phi(U_1) = S^2 \setminus \{N\}$ and $\Phi(U_0) = S^2 \setminus \{S\}$. Hence we just need to check the two local expressions

$$\phi_N \circ \Phi \circ \varphi_1^{-1}, \qquad \qquad \phi_S \circ \Phi \circ \phi_0^{-1}$$

In the first case

$$\phi_N \circ \Phi \circ \phi_1^{-1}(z) = \phi_N \circ \Phi([z:1]) = \phi_N \circ \phi_N^{-1}(z) = z,$$

which is smooth with smooth inverse. In the second case $\phi_S \circ \Phi \circ \phi_0^{-1}(z) = \phi_S \circ \Phi([1:z])$. If $z \neq 0$, then

$$\begin{split} \phi_S \circ \Phi([1:z]) &= \phi_S \circ \phi_N^{-1}(\frac{1}{z}) \\ &= \phi_S \Big(\frac{2\frac{1}{z}}{|z|^{-2} + 1}, \frac{|z|^{-2} - 1}{|z|^{-2} + 1} \Big) \\ &= \phi_S \Big(\frac{2\overline{z}}{1 + |z|^2}, \frac{1 - |z|^2}{1 + |z|^2} \Big) \\ &= \overline{z}. \end{split}$$

If z = 0, then $\phi_S \circ \Phi([1:0]) = \phi_S(N) = 0 = \overline{z}$. In both cases $\phi_S \circ \Phi \circ \phi_0^{-1}(z) = \overline{z}$, which is smooth with smooth inverse.

3. Regular Values

Let M and N be manifolds of the same dimension with M compact and let $f: M \to N$ be a smooth map. Let $y \in N$ be a regular value of f. Prove the following statements.

- a) The preimage $f^{-1}(y)$ has only finitely many elements.
- b) The number of elements in the fiber over y is locally constant in N. That is, for every regular value $y \in N$ there exists a neighborhood V of y, such that all $y' \in V$ are regular values and $\#f^{-1}(y) = \#f^{-1}(y')$.
- c) If the space of regular values is connected, then $\#f^{-1}(y)$ is constant for all regular values.

Solution:

a) As y is a regular value of f, we know that df_x is surjective for all $x \in f^{-1}(y)$ and since M and N have the same dimension df_x is bijective. Therefore f is locally a diffeomorphism, that is, there exist an open neighborhood U_x of x and an open neighborhood V_x of y such that $f|_{U_x} : U_x \to V_x$ is a diffeomorphism. In particular $U_x \cap f^{-1}(y) = \{x\}$. Moreover f is continuous and $\{y\}$ is closed in N, so $f^{-1}(y) \subset M$ is closed and hence compact. This implies that the open cover $\{U_x\}_{x \in f^{-1}(y)}$ of $f^{-1}(y)$ admits a finite subcover $\{U_{x_i}\}_{i=1}^n$. Together with the above observation we conclude that

$$f^{-1}(y) = f^{-1}(y) \cap \bigcup_{i=1}^{n} U_{x_i} = \bigcup_{i=1}^{n} (U_{x_i} \cap f^{-1}(y)) = \bigcup_{i=1}^{n} \{x_i\} = \{x_1, \dots, x_n\}$$

and hence $f^{-1}(y)$ is finite.

b) Let $f^{-1}(y) = \{x_1, \ldots, x_n\}$ with $U_i \ni x_i$ open and $U_i \cap U_j = \emptyset$, such that $f|_{U_i} \colon U_i \to V_i$ is a diffeomorphism (as above, restricting the neighborhoods to make them pairwise disjoint, if necessary).

The set $A := M \setminus \bigcup_{i=1}^{n} U_i$ is closed and hence compact. It follows that f(A) is compact and thus closed. Hence its complement $W \coloneqq N \setminus f(A)$ is open and $y \in W$, since $A \cap f^{-1}(y) = \emptyset$.

We define $V \coloneqq \bigcap_{i=1}^{n} V_i \cap W$, which is an open neighborhood of y with the additional property that for all $y' \in V$ the preimage is contained in $\bigcup_{i=1}^{n} U_i$. Therefore it holds that

$$f^{-1}(y') = f^{-1}(y') \cap \bigcup_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (U_i \cap f^{-1}(y')) = \bigcup_{i=1}^{n} \{x'_i\} = \{x'_1, \dots, x'_n\},$$

so $\#f^{-1}(y) = \#f^{-1}(y')$. Moreover all the x'_i (and hence the y') are regular, as $f|_{U_i}: U_i \to V_i$ is a diffeomorphism.

c) Let R be the set of all regular values of f. From b) it follows that the map $g: R \to \mathbb{Z}, y \mapsto \#f^{-1}(y)$ is continuous. Thus g(R) is connected, that is, g is constant on R.