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1. Ideal Triangles in the Hyperbolic Plane

Let H2 := {x+iy ∈ C : y > 0} be the upper half-plane endowed with the hyperbolic metric (gij)(x, y) =
1
y2 (δij).

The “point at infinity”, ∞, denotes the “point” which corresponds to limy→∞(x, y) for all x ∈ R. An ideal

triangle is a geodesic triangle whose all vertices lie on the x-axis or whose two vertices lie on the x-axis and one

at the point at infinity.

a) Prove that every ideal triangle is congruent to the ideal triangle with vertices A = (0, 0), B = (1, 0) and

C = ∞.

b) Prove that the area of any ideal triangle is π.

Solution:

a) Let U, V,W be the vertices of an ideal triangle.

If U, V,W ∈ R with U < V < W , consider

f(z) :=
(V −W )(z − U)

(V − U)(z −W )
∈ Isom(H2),

otherwise if U < V ∈ R,W = ∞, consider

f(z) :=
(z − U)

(V − U)
∈ Isom(H2).

Then f(U) = A, f(V ) = B and f(W ) = C.

b) From a) it suffices to show this result for a specific ideal triangle ∆. We choose A = −1, B = 1, C =

∞. Then

F =

ˆ
∆

√
det g dA =

ˆ 1

−1

ˆ ∞

√
1−x2

1
y2 dy dx =

ˆ 1

−1

[
− 1

y

]∞
√
1−x2

dx

=

ˆ 1

−1

1√
1− x2

dx = [arcsinx]
1
−1 = π

2 − (−π
2 ) = π.

2. Hopf Fibration

Let π : Cn+1 \ {0} → CPn be the canonical projection from Ex. 2 of Exercise Sheet 10. The Hopf fibration

H : S2n+1 → CPn

is given by the restriction of π to S2n+1 ⊂ Cn+1 \ {0}.

a) Let n = 1. Describe the fibers of H over a point x ∈ CP1, that is, H−1(x).

b) Prove that H : S2n+1 → CPn is a submersion.

Solution:
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a) For z, z′ ∈ H−1(x) we have

H(z) = H(z′) ⇔ z ∼ z′ ⇔ ∃λ ∈ C : z = λz′.

Since z, z′ ∈ S3, it follows that |λ| = |λ||z′| = |z| = 1. Thus

H−1(x) = {λz : λ ∈ S1} ∼= S1.

b) It suffices to check the surjectivity of dHp for p = (1, 0, . . . , 0)1. For i = 1, . . . , n and λ ∈ S1 ⊂ C
define γi : (−ε, ε) → S2n+1 by

γi(t) := (cos t, 0, . . . , 0︸ ︷︷ ︸
i−1

, λ sin t, 0, . . . , 0) ∈ S2n+1 ⊂ Cn+1

(that is z0 = cos t, zi = λ sin t). Then

d
dt

∣∣
t=0

(ϕ0 ◦H ◦ γi) (t) = d
dt

∣∣
t=0

(0, . . . , 0︸ ︷︷ ︸
i−1

, λ sin t
cos t , 0, . . . , 0) =

λ
cos2 t

∣∣
t=0

· ei = λ · ei,

see Ex. 2 of Exercise solution 10 for the definition of ϕ0. So we conclude that d(ϕ0 ◦H)p(TS
2n+1
p ) = Cn =

d(ϕ0)H(p)(TCPn
H(p)) and therefore dHp is surjective.

1For any q ∈ S2n+1 ⊂ Cn+1, there exists A ∈ U(n+ 1) such that A(p) = q. A defines a diffeomorphism on CPn (with A∗

as the inverse map) satisfying H ◦ A = A ◦ H, so we have dHq ◦ dAp = dAH(p) ◦ dHp and obtain surjectivity of dHq from

that of dHp.

3. Mapping Degree of Gauss Map

Let M ⊂ R3 be a compact, connected surface (without boundary) with exterior Gauss map N : M → S2. Prove

that

deg(N) =
1

2
χ(M).

Hint: Use Exercise 3 of Sheet 7.

Solution:

Note that p ∈ M is a regular point of N if and only if K(p) ̸= 0, since K(p) = det(−dNp). Moreover

sgn(dNp) =

+1, K(p) > 0,

−1, K(p) < 0.

We define M+ := {p ∈ M : K(p) > 0} and M− := {p ∈ M : K(p) < 0}.
By the Theorem of Gauss-Bonnet and Exercise 3 of Sheet 7 we obtain

2πχ(M) =

ˆ
M

K dA =

ˆ
M+

|K| dA−
ˆ
M−

|K| dA = A(N |M+)−A(N |M−).

Now, let R ⊂ S2 be set of all regular values of N .

The area of N is counted with multiplicities and from Sard’s Theorem almost every value of N is
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regular, hence we compute

A(N |M+
)−A(N |M−) =

ˆ
N(M+)

#N |−1
M+

(q) dA(q)−
ˆ
N(M−)

#N |−1
M−

(q) dA(q)

=

ˆ
N(M+)∩R

#N |−1
M+

(q) dA(q)−
ˆ
N(M−)∩R

#N |−1
M−

(q) dA(q)

=

ˆ
R

(
#N |−1

M+
(q)−#N |−1

M−
(q)

)
︸ ︷︷ ︸

=degN

dA(q)

= A(S2) degN = 4π degN,

hence 2πχ(M) = 4π degN and therefore deg(N) = 1
2χ(M).
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