m Differential Geometry I

Eidgendssische Technische Hochschule Ziirich D-MATH
Swiss Federal Institute of Technology Zurich Prof. Dr. Urs Lang

Solution 11

1. Ideal Triangles in the Hyperbolic Plane

Let H? := {x+iy € C: y > 0} be the upper half-plane endowed with the hyperbolic metric (g;;)(z,y) = = oz (035)-
The “point at infinity”, oo, denotes the “point” which corresponds to lim,_,o(z,y) for all z € R. An ideal
triangle is a geodesic triangle whose all vertices lie on the x-axis or whose two vertices lie on the z-axis and one

at the point at infinity.

a) Prove that every ideal triangle is congruent to the ideal triangle with vertices A = (0,0), B = (1,0) and
C = o0.

b) Prove that the area of any ideal triangle is 7.

Solution:

a) Let U, V, W be the vertices of an ideal triangle.
IfU,V,W e R with U <V < W, consider

€ Isom(H?),

f(z) = (Z[é)) € Tsom(H?).

Then f(U)=A, f(V) =B and f(W)=C.
b) From a) it suffices to show this result for a specific ideal triangle A. We choose A = —1,B=1,C =

P s [ [ = [ [B] e

dx = [arcsmx} 1 =5-(-%)=m

00. Then

/ m

2. Hopf Fibration
Let w: C"*1\ {0} — CP" be the canonical projection from Ex. 2 of Exercise Sheet 10. The Hopf fibration
H: s>+ — cp”
is given by the restriction of 7 to $?"+! c C"*1\ {0}.
a) Let n = 1. Describe the fibers of H over a point z € CP!, that is, H ! (z).

b) Prove that H: S?"*! — CP" is a submersion.

Solution:
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a) For 2,2’ € H!(x) we have
Hz)=H()e 2z~ <INeC:2=)\.
Since 2,2’ € S3, it follows that |A\| = |A||z/| = |2| = 1. Thus
H Y z)={\z: e S} =5

b) It suffices to check the surjectivity of dH, for p = (1,0,.. .,O)H Fori=1,...,nand A € 81 c C
define v;: (—¢,¢) — S *! by

7i(t) = (cost,0,...,0,Asint,0,...,0) € "+t c Cc*!
——
i—1
(that is zg = cost, z; = Asint). Then
d _d sint A _
E|t:0(¢OOHO’yi)(t)_ E|t:O(07...,07>\%,0,...70)— mhzo'ei—)\'eh
i—1

see Ex. 2 of Exercise solution 10 for the definition of ¢o. So we conclude that d(¢o o H),(T'S;"t') = C* =
d(¢0) (p) (TCPYy,,)) and therefore dH), is surjective.

LFor any q € S2"+1 c C™*1 there exists A € U(n + 1) such that A(p) = q. A defines a diffeomorphism on CP™ (with A*
as the inverse map) satisfying H o A = Ao H, so we have dHq o dAp = dAp(p) o dHp and obtain surjectivity of dHg from
that of dHp.

3. Mapping Degree of Gauss Map

Let M C R? be a compact, connected surface (without boundary) with exterior Gauss map N: M — S2. Prove
that

1
dea(N) = 3 x(M)
Hint: Use Exercise 3 of Sheet 7.

Solution:

Note that p € M is a regular point of N if and only if K(p) # 0, since K (p) = det(—dN,). Moreover
sgn(dN,) =

We define My =={pe M : K(p) >0} and M_ ={pe M : K(p) < 0}.
By the Theorem of Gauss-Bonnet and Exercise 3 of Sheet 7 we obtain

QWX(M):/MKdA:/M |K|dA—/M |K|dA = A(N|p, ) — A(N|ar).

Now, let R C S? be set of all regular values of N.

The area of N is counted with multiplicities and from Sard’s Theorem almost every value of N is
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regular, hence we compute
AVlar,) = AWV = [

N(M

= / #N|of (q) dA(q) — / #N 3 (q) dA(q)
N(M4)NR

N(M_)NR

N @dA@) - [ NI (@dala)
) N(M_)

= [ (#NIy (@) = #NI3/ (2)) dA(q)
R
=deg N

= A(S%)deg N = 4ndeg N,

hence 2mx (M) = 4m deg N and therefore deg(N) = x(M).
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