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1. Orthogonal Structures

Let π : E → M be a vector bundle of rank k over a manifold M . An orthogonal structure g on E assigns

to every point p ∈ M a scalar product gp on the fiber Ep := π−1(p), such that for all sections s, s′ the map

p 7→ gp(s(p), s
′(p)) is smooth.

Prove that every vector bundle admits an orthogonal structure.

Hint: Use a partition of unity.

Solution:

We fix a bundle atlas {ψα : Vα := π−1(Uα) → Uα × Rk}α∈A with ψα = (π, hα) such that {Uα} is locally

finite. Define an orthogonal structure

gαp (ξ, η) := ⟨hα(ξ), hα(η)⟩,

on Vα where ⟨·, ·⟩ denotes the standard scalar product on Rk.

Consider now a partition of unity {λα : M → R}α∈A subordinate to {Uα}α∈A. Then

gp(ξ, η) :=
∑
α∈A

λα(p) · gαp (ξ, η)

defines an orthogonal structure on E, where λα(p) · gαp (ξ, η) := 0 if p /∈ Uα. Indeed, λα ≥ 0, for every

p ∈M there exists α ∈ A with λα(p) > 0 and the sum is locally finite; therefore gp is a scalar product.

Moreover for sections s, s′

p 7→ gp(s(p), s
′(p)) =

∑
α∈A

λα(p) · ⟨hα ◦ s(p), hα ◦ s′(p)⟩

is smooth as composition of smooth maps.

2. Line Bundles

a) Prove that every vector bundle of rank 1 over a simply connected manifold is trivial.

b) Prove that, up to isomorphism, there exist exactly two vector bundles of rank 1 over S1.

Solution:

Let E be a vector bundle of rank 1 over M . From Exercise 1 we can choose a metric g on E and consider

the subset S := {v ∈ E : g(v, v) = 1}.
Since E is a vector bundle of rank 1, the metric g is locally given by

g : U × R2 → R, gp(v, w) = θ(p)vw,

for an open subset U ⊂M and θ ∈ C∞(U) with θ(p) > 0.1

Then S is given over U by the graph (not the trace!) of the smooth maps p 7→ v = ±1/
√
θ(p). From

this it follows that π|S : S →M is a 2-covering of M .
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a) We fix a point p ∈ M and a vector v ∈ S ∩ π−1(p). For every point q ∈ M we choose a curve

γq : [0, 1] → M connecting p to q. Since π|S : S → M is a covering, there is a unique lift γ̄q : [0, 1] → S

with γ̄q(0) = v. We define a map s : M → S of the vector bundle by setting s(q) := γ̄q(1).

The map s is well defined because M is simply connected and hence curves starting and ending at

the same points are homotopic. Indeed, let γ′q : [0, 1] → M be another curve as above. Since M is simply

connected, there exists an homotopyH : [0, 1]×[0, 1] →M withH(0, t) = γq(t), H(1, t) = γ′q(t), H(s, 0) = p

and H(s, 1) = q. By the Homotopy Lifting Property there exists a unique lift H̄ : [0, 1] × [0, 1] → S with

H̄(0, t) = γ̄q(t) and with fixed end points. Then

γ̄′q(1) = H̄(1, 1) = H̄(0, 1) = γ̄q(1)

and s is well defined.

Moreove s : M → E is a smooth section, since locally S is given by the graph of a smooth function, as

we have seen above.

Since s never vanishes it follows from Proposition 10.3 that the vector bundle E is trivial.

b) Let π : E → S1 be a vector bundle of rank 1 over S1 and denote by S the 2-covering as above. Choose

p ∈ S1, v ∈ S ∩ π−1(p) = {v,−v} and a simply closed curve γ : [0, 1] → S1 with γ(0) = γ(1) = p. Consider

now the unique lift γ̄ : [0, 1] → S with γ̄(0) = v. By definition of a lift there are now two possibilities,

either γ̄(1) = v or γ̄(1) = −v.
In the first case γ̄ induces a nowehere vanishing section of the vector bundle, which maps every point

q ∈ S1 to the unique w ∈ S ∩ π−1(q) lying on the trace of γ̄. E is then trivial by Proposition 10.3.

In the second case, suppose that E is trivial. We want to reach a contradiction. Then by Proposition

10.3 there exists a non-trivial section s : S1 → E and we can assume that gp(s(p), v) > 0 (otherwise take

the ”opposite” section). Define γ̃ : [0, 1] → S by

γ̃(t) :=
s ◦ γ(t)

|s ◦ γ(t)|g
∈ S ∩ π−1(γ(t))

and notice that γ̃ is a lift of γ with γ̃(0) = v (we can rescale the value of s(q) ∈ Eq along the fiber, e.g.

dividing by its gq-norm, without changing its projection onto S1). But γ̃(1) = v ̸= −v = γ̄(1). This

contradicts the uniqueness of γ̄ and therefore E is not trivial. Overall this shows that E is trivial if and

only if γ̄(1) = v.

Now we are finally ready to prove b). Either the vector bundle is trivial, and in that case we are done,

or it’s not.

An example of non-trivial vector bundles of rank 1 over S1 is given by

E :=
{(

cos t, sin t, r cos t
2 , r sin

t
2

)
∈ S1 × R2 : t, r ∈ R

}
and π : E → S1, π(x, y, u, v) := (x, y). It’s non-trivial because any lift of γ starting at (p, v) ends at (p,−v).

It remains to show that any two non-trivial rank 1-vector bundles π : E → S1 and π′ : E′ → S1 are

isomorphic. Let γ̄ : [0, 1] → S and γ̄′ : [0, 1] → S′ the two lifts of γ : [0, 1] → S1 with γ̄(0) = v and

γ̄(1) = −v, respectively., γ̄′(0) = v′ and γ̄′(1) = −v′

Then Φ: E → E′, Φ(rγ̄(t)) := rγ̄′(t) is an isomorphism.

1This is an expression for g on the image of the local trivializations of the vector bundle. Since the discussion is local and

local trivializations are diffeomorphisms we can work there from now on. Recall that local trivializations restrict to vector

space isomorphisms on the fibers of the bundle and therefore for each p, the image of g written above must be a multiple of

the standard scalar product.
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3. F -related Vector Fields

Let F : M → N be a C1-map, X,X ′ ∈ Γ(TM) and Y, Y ′ ∈ Γ(TN) vector fields. We say that Y is F -related to

X if

YF (p) = dFp(Xp) for every p ∈M.

a) Suppose that Y is F -related to X and let φ, ϕ the local flows of X and Y , respectively. Show that

F ◦ φt = ϕt ◦ F.

b) Prove that if Y is F -related to X and Y ′ is F -related to X ′, then [Y, Y ′] is F -related to [X,X ′].

Solution:

a) Let cp : (−ε, ε) →M be an integral curve of X through p ∈M . Then φt(p) = cp(t) and

d
dt (F ◦ cp)(t) = dFcp(t) ◦ ċp(t) = dFcp(t)(Xcp(t)) = YF◦cp(t).

Thus F ◦ cp is an integral curve of Y through F (p) and therefore

ϕt ◦ F (p) = F ◦ cp(t) = F ◦ φt(p).

b) Let f ∈ C∞(N). Then it holds that

Y (f)(F (p)) = YF (p)(f) =
(
(dFp(Xp)

)
(f) = dfF (p)((dFp(Xp))

= d(f ◦ F )p(Xp) = Xp(f ◦ F ) = X(f ◦ F )(p)

and therefore

[Y, Y ′]F (p)(f) = YF (p)(Y
′(f))− Y ′

F (p)(Y (f))

= Xp(Y
′(f) ◦ F )−X ′

p(Y (f) ◦ F )

= Xp(X
′(f ◦ F ))−X ′

p(X(f ◦ F ))

= [X,X ′]p(f ◦ F )

= d(f ◦ F )p
(
[X,X ′]p

)
= dfF (p)

(
dFp([X,X

′]p)
)

= dFp([X,X
′]p)(f),

so [Y, Y ′]F (p) = dFp([X,X
′]p).
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