
Differential Geometry I
D-MATH

Prof. Dr. Urs Lang

Solution 2

1. Characterization of convex curves

Let c ∈ C2([0, L],R2) be a simple C2-closed curve parametrized by arc-length. Show that the following two

statements are equivalent:

(i) The curvature κor of c doesn’t change sign, that is, κor(t) ≥ 0 for all t ∈ [0, L] or κor(t) ≤ 0 for all t ∈ [0, L].

(ii) The curve c is convex, that is, the image of c is the boundary of a convex subset C ⊂ R2.

Solution:

We begin by noticing that c is convex if and only if for each t ∈ [0, L] the curve lies in one of the closed

half-planes determined by the tangent line at c(t).

Let ċ = e1 : [0, L] → S1 be the tangent indicatrix and let θ : [0, L] → R be a continuous (hence

differentiable, as seen in class) polar angle function for e1, that is,

e1(s) = (cos θ(s), sin θ(s))

for all s ∈ [0, L]. Then

ė1(s) = θ′(s)(− sin θ(s), cos θ(s)) = θ′(s)e2(s),

and using the first Frenet equation we conclude that θ′ = κor, thus

ˆ t

0

κor(s) ds = θ(t)− θ(0).

This shows that the condition that κor doesn’t change sign is equivalent to θ being monotonic.

We now prove (i) ⇒ (ii). Suppose that κor doesn’t change sign. Without loss of generality we might

assume that it’s always ≥ 0 and θ is non-decreasing. By Jordan curve theorem (see e.g. Allen Hatcher’s

“Algebraic Topology” 2.B), C \ c([0, L]) consists of exactly two open connected components. Let U be the

bounded component, then the Jordan curve theorem also says ∂U = c[0, L]. Our purpose is to show that

U is convex. Pick any t0 ∈ [0, L], denote by n0 := e2(t0) the normal vector to c at t0 such that (e1(t0), n0)

is positively oriented and define h : [0, L] → R by

h(t) := ⟨c(t)− c(t0), n0⟩.

Lemma: h(t) doesn’t change sign for t ∈ [0, L].

Proof of lemma: Let T be the tangent line to c at c(t0), the map h measures the distance of c(t) from T .

Suppose h changes signs on [0, L] (i.e. c runs on both sides of T ), then since [0, L] is compact and c is

C2-closed (in particular, h can be extended to an L-periodic C2-function on R), the map h has a maximum

at t1 and a minimum at t2 with h′(t1) = h′(t2) = 0, h(t2) < h(t0) = 0 < h(t1).

Therefore ⟨ċ(t0), n0⟩ = ⟨ċ(t1), n0⟩ = ⟨ċ(t2), n0⟩ = 0, that is, ċ(t0), ċ(t1), ċ(t2) are parallel and so there

are s1 < s2 ∈ {t0, t1, t2} such that ċ(s1) = ċ(s2).

Since θ is non-decreasing this implies θ(s2) − θ(s1) = 2πk for some k ∈ N0. The theorem of turning

tangents (Hopf Umlaufsatz), together with the fact that θ is non-decreasing, implies 0 ≤ θ(s2)−θ(s1) ≤ 2π,

hence k is either 0 or 1.
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If k = 0 then θ is constant on [s1, s2], which means that ċ(t) = ċ(s1) is orthogonal to n0 for t ∈ [s1, s2].

Hence ḣ = 0 on [s1, s2] and h(s1) = h(s2), contradiction arises.

If k = 1 then by Hopf Umlaufsatz θ must be constant on [0, s1] and on [s2, L], which by the same

argument implies that ḣ = 0 on [0, s1] ∪ [s2, L]. Hence h(s2) = h(L) = h(0) = h(s1). Again this is a

contradiction. The lemma is proved. □

As a corollary of the above lemma, for any t0 ∈ [0, L], Ū is also contained in one side of the tangent

line T at c(t0) (assume h ≥ 0 on [0, L], then the connected set {v ∈ R2, ⟨v− c(t0), n0⟩ < 0} is contained in

R2\c([0, L]), hence in the unbounded connected component of R2\c([0, L]). This implies U ⊂ {v ∈ R2 : ⟨v−
c(t0), n0⟩ ≥ 0}). Suppose U is not convex, then there exists p, q ∈ U such that the line segment connecting

p and q is not contained in U . Hence there exists s ∈ (0, 1) such that sp + (1− s)q ∈ ∂U = c([0, L]). We

write sp + (1 − s)q = c(s0) for s0 ∈ [0, L]. If p − q is not parallel to ċ(s0), then p, q ∈ U lie on different

sides of the tangent line T at c(s0), contradiction arises. If p− q is parallel to ċ(s0), then since U is open,

there exists an open neighborhood of p contained in U , hence we also obtain points in U lying on different

sides of T , contradiction arises. Therefore, U is open with ∂U = c([0, L]).

We now prove (ii) ⇒ (i). Suppose c([0, L]) = ∂V for a convex set V .

Lemma: For t0 ∈ [0, L], define n0 := e2(t0), h(t) := ⟨n0, c(t)− c(t0)⟩ as above, where (e1, e2) is the Frenet

frame of c. Then h doesn’t change sign on [0, L].

Proof of lemma: by the supporting hyperplane theorem (see e.g. “Convex Optimization” by Boyd &

Vandenberghe, or the more general version Hahn-Banach separation theorem), there exists n1 ∈ R2, |n1| =
1 such that ⟨n1, v − c(t0)⟩ ≥ 0 for any v ∈ V , hence for any v ∈ ∂V = c([0, L]) by continuity. It follows

that the function h1(t) := ⟨n1, c(t)⟩ achieves a minimum at t0. Since h1 can be extended to an L-periodic

C2 function on R, we have h′
1(t0) = 0, which means ⟨n1, ċ(t0)⟩ = 0. So n1 = ±n0, the lemma is proved. □

Suppose θ is not monotonic on [0, L], then there are t1 < t2 in [0, L] with θ(t1) = θ(t2) and θ not

constant on [t1, t2]. By Hopf Umlaufsatz, ċ maps surjectively onto S1, so there exists t3 ∈ [0, L] with

ċ(t1) = −ċ(t3). If the tangent lines at c(t1), c(t2) and c(t3) are pairwise distinct (i.e. ⟨e2(t1), c(ti)⟩ for

i ∈ {1, 2, 3} are pairwise distinct), then they are parallel and one of them lies between the other two.

This can’t be the case by the lemma above, thus two of the tangent lines coincide and there are points

p, q ∈ {c(t1), c(t2), c(t3)} lying on the same tangent line. Write p = c(s1), q = c(s2), s1 < s2.

Let pq denote the closed straight line segment from p to q. We claim that pq ⊂ c([0, L]). Suppose that

r ∈ pq is not on c and denote by S the straight line perpendicular to pq at r.

Since p and q lie on distinct sides of S and c is simple closed, S intersect c in at least two points, say

x and y (S intersects c on c
(
(s1, s2)

)
and c

(
(s2, L] ∪ [0, s1)

)
respectively) where x is the nearest point to

r. Then x is between r and y since the lemma above implies x, y lie on the same side of the straight line

passing through p, q, and we have x, y, r, p, q are pairwise distinct. Thus x is in the interior of the convex

hull H of p, q, y (H := {λ1p + λ2q + λ3y : λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 = 1}). By the lemma above, there

exists nx ∈ R2 \ {0} such that ⟨nx, c(t) − x⟩ ≥ 0 for any t ∈ [0, L], in particular, ⟨nx, p − x⟩, ⟨nx, q − x⟩,
⟨nx, y − x⟩ ≥ 0, hence ⟨nx, z − x⟩ ≥ 0 for any z ∈ H. But x is in the interior of H, so there exists small
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λ > 0 s.t. x− λnx ∈ H but ⟨nx, x− λnx − x⟩ < 0, contradiction arises.

Hence pq ⊂ c([0, L]). Let I := pq \ {p, q}. Note c([s1, s2]) is compact, hence c([s1, s2]) ∩ I is closed in

I. Similarly, c([0, s1] ∪ [s2, L]) is closed in I. Since I is connected and is the union of two disjoint closed

subsets c([s1, s2])∩ I and c([0, s1]∪ [s2, L]), we have I equals to one of them. Hence pq is contained either

in c([s1, s2]) or c([0, s1] ∪ [s2, L]).

Case 1: pq ⊂ c([s1, s2]). Suppose there exists t ∈ [s1, s2] such that c(t) /∈ pq, then the connected set pq

is the union of two disjoint closed subsets c([s1, t]) ∩ pq and c([t, s2]) ∩ pq, in particular, {p, q} ⊂ c([s1, t])

or {p, q} ⊂ c([t, s2]). Since c is simple, we have t = s1 or s2, which means c(t) = p or q, contradiction

arises. Therefore, c([s1, s2]) = pq and c is the straight line segment from p to q on [s1, s2]. It follows that

ċ(s1) = ċ(s2), hence s1 = t1, s2 = t2 and θ is a constant on [t1, t2] by unique lifting property of covering

space, contradiction arises.

Case 2: pq ⊂ c([0, s1] ∪ [s2, L]). By the same argument as above, we have c is a straight line segment

on [0, s1] and [s2, L] respectively. Hence θ(s2) = θ(L) and θ(0) = θ(s1), and we also have ċ(s1) = ċ(0) =

ċ(L) = ċ(s2). It follows that s1 = t1, s2 = t2. But we have θ(t1) = θ(t2) by assumption at the beginning,

so θ(L) = θ(s2) = θ(s1) = θ(0), and this is impossible by Hopf Umlaufsatz. Therefore, we proved that θ is

monotonic on [0, L], i.e. κor doesn’t change sign.

(Remark: the above proof is still valid if c is only assumed to be C1-closed, with the condition (i)

changed to “θ is monotonic on [0, L]”.)

2. Submanifolds

Prove that the following matrix groups are submanifolds of Rn×n and compute their dimensions:

(i) SL(n,R) := {A ∈ Rn×n : detA = 1},

(ii) SO(n,R) := {A ∈ GL(n,R) : A−1 = AT, detA = 1}.

Solution:

The idea is to write SL(n,R) and SO(n,R) as preimages of regular values of smooth maps and apply

regular value theorem.

(i) Consider the smooth map F : Rn×n → R, A 7→ detA. Notice that F is smooth and SL(n,R) = F−1(1)

so we want to show that 1 is a regular value for F , that is, DAF : Rn×n −→ R is surjective for all A

in SL(n,R). Since R is one dimensional it suffices to show that DAF is not zero for all A ∈ SL(n,R).
Indeed

DAF (A) =
d

dt

∣∣∣∣
t=0

F (A+ tA)

=
d

dt

∣∣∣∣
t=0

det(A(1 + t))

=
d

dt

∣∣∣∣
t=0

(1 + t)n detA

=
d

dt

∣∣∣∣
t=0

(1 + t)n

= n ̸= 0.

So DAF is surjective for A ∈ SL(n,R) and dim(SL(n,R)) = n2 − 1.
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(ii) Consider the open subset W := {A ∈ Rn×n : detA > 0} ⊂ Rn×n and the smooth map F : W →
Rn(n+1)/2 ∼= Symm(n), A → AAT. Notice that

F−1(I) =
{
A ∈ Rn×n : detA > 0, AAT = I

}
=
{
A ∈ Rn×n : detA = 1, AAT = I

}
= SO(n,R).

We want to show that I is a regular value of F , that is, DAF : Rn×n −→ Rn(n+1)/2 is surjective for

all A in SO(n,R). For B ∈ Rn×n we compute

DAF (B) =
d

dt

∣∣∣∣
t=0

F (A+ tB)

=
d

dt

∣∣∣∣
t=0

(A+ tB)(A+ tB)T

=
d

dt

∣∣∣∣
t=0

(A+ tB)
(
AT + tBT

)
=

d

dt

∣∣∣∣
t=0

AAT + t
(
BAT +ABT

)
+ t2BBT

= BAT +ABT.

Hence given any X in Rn(n+1)/2 ∼= Symm(n), set B := 1
2XA, then

DAF (B) =
1

2
XAAT +A

(
1

2
XA

)T

=
1

2
XAAT +

1

2
AATXT = X.

This shows that DAF is surjective for all A ∈ F−1(I) and hence SO(n,R) is a n(n−1)
2 -dimensional

submanifold of Rn×n.

3. Tangent bundle

Let M ⊂ Rn be an m-dimensional submanifold. Show that the tangent bundle

TM :=
⋃
p∈M

{p} × TMp

is a 2m-dimensional submanifold of R2n.

Solution:

TM ⊂ R2n is a 2m-submanifold of R2n if and only if for all (p0, X0) ∈ TM there exist open sets U ⊂
R2m, V ⊂ R2n, an immersion f : U → R2n such that (p0, X0) ∈ f(U) = TM ∩ V and f : U → TM ∩ V is

a homeomorphism.

Let (p0, X0) ∈ TM then there exists a local parametrization: open sets U0 ⊂ Rm, V0 ⊂ Rn, an

immersion φ : U0 → Rn with p0 ∈ φ (U0) = M ∩ V0 and φ : U0 → M ∩ V0 is a homeomorphism.

We define a local parametrization of TM at (p0, X0) as follows: let U := U0 × Rm ⊂ R2m, V :=

V0 × Rn ⊂ R2n and f : U → R2n defined by

f(x, ξ) = (φ(x), Dxφ(ξ)) .
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Since φ is smooth, the same holds for f . The derivative of f at (x, ξ) is given by

D(x,ξ)f =

(
Dxφ 0

∗ Dxφ

)
,

(using linearity of Dxφ we have

Dξ(Dxφ)(X) =
d

dt

∣∣∣
t=0

Dxφ(ξ + tX) =
d

dt

∣∣∣
t=0

Dxφ(ξ) + tDxφ(X) = Dxφ(X).

) As φ is an immersion Dxφ has rank m, so D(x,ξ)f has rank 2m and we conclude that f is an immersion.

Moreover
f(U) = f(U0 × Rm) =

⋃
x∈U0

{φ(x)} ×Dxφ(Rm) =
⋃

p∈φ(U0)

{p} × TMp

=
⋃

p∈M∩V0

{p} × TMp = TM ∩ (V0 × Rn) = TM ∩ V,

and (p0, X0) ∈ f(U).

In order to show that f : U → TM ∩ V is a homeomorphism, consider g : TM ∩ V −→ U

g(p,X) :=
(
φ−1(p), Dpφ

−1(X)
)
.

The function φ−1 is continuous by our previous assumption. By chain rule We also note that for x ∈ U0,

if v ∈ Rm such that (Dxφ)
TDxφ(v) = 0, then

|Dxφ(v)|2 =
〈
(Dxφ)

TDxφ(v), v
〉
= 0,

hence v = 0 since Dxφ is injective. It follows that (Dxφ)
TDxφ is non-singular and thus (Dxφ)

T is injective

on Range(Dxφ). Then for X ∈ Range(Dxφ), we have

Dxφ(ξ) = X ⇔ (Dxφ)
TDxφ(ξ) = (Dxφ)

TX ⇔ ξ =
(
(Dxφ)

TDxφ
)−1

(Dxφ)
TX.

So by chain rule we have Dpφ
−1(X) =

(
(Dφ−1(p)φ)

TDφ−1(p)φ
)−1

(Dφ−1(p)φ)
TX is continuous with respect

to (p,X) ∈ TM ∩ V .

Finally, we have

f ◦ g(p,X) = f
(
φ−1(p), Dpφ

−1(X)
)

=
(
p,Dφ−1(p)φDpφ

−1(X)
)

=
(
p,Dp(φ ◦ φ−1)(X)

)
= (p,X),

and similarly

g ◦ f(x, ξ) = g (φ(x), Dxφ(ξ)) =
(
φ−1 ◦ φ(x), Dφ(x)φ

−1Dxφ(ξ)
)
= (x, ξ).

This shows that f−1 = g is continuous.

(Remark: for Hausdorff spaces X,Y and an injective continuous map f : X → f(X) ⊂ Y , we have a

general condition on f to guarantee it is a homeomorphism onto f(X):

∀y ∈ f(X),∃ an open neighborhood U ⊂ Y of y and a compact set K ⊂ X such that f−1(U) ⊂ K. (⋆)

Suppose (⋆) holds, it suffices to show that f(C) is closed in f(X) for any closed C ⊂ X. Let y ∈ f(X)\f(C),

we choose U and K as in (⋆). Then K ∩ C is a closed subset of a compact set, hence compact. We have
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f(K ∩ C) is compact since f is continuous. Note that y /∈ f(C), so in particular, y /∈ f(K ∩ C). Since Y

is Hausdorff, there exists an open neighborhood V of y such that V ∩ f(K ∩ C) = ∅. Therefore, U ∩ V

is a neighborhood of y such that U ∩ V ∩ f(C) = ∅ (suppose y′ ∈ U ∩ V and y′ = f(x) for x ∈ C, then

x ∈ K since f−1(U) ⊂ K. Hence y′ ∈ f(K ∩C) ∩ V , contradiction arises). Since y is arbitrarily chosen in

f(X) \ f(C), we have f(C) is closed.

The advantage of this approach is to avoid explicitly writing the inverse of f and in many cases we only

need some “rough” estimates. As an application, to show f is a homeomorphism in the above solution,

we firstly note that f : U → TM ∩ V is bijective since φ : U0 → M ∩ V0 is a homeomorphism and Dxφ is

injective for x ∈ U0. Let (p,X) ∈ TM ∩ V . Since φ : U0 → M ∩ V0 is a homeomorphism there exists ε > 0

and a compact set K ⊂ U0 such that Bε(p) ∩M ⊂ φ(K). Since K is compact, we have
(
(Dxφ)

TDxφ
)−1

is continuous hence bounded in the set of m × m positive definite matrices for x ∈ K. Thus we have a

positive lower bound for the smallest eigenvalue of (Dxφ)
TDxφ when x ∈ K. As a result, there exists

C > 0 such that

|Dxφ(v)|2 =
〈
(Dxφ)

TDxφ(v), v
〉
≥ C2|v|2

whenever x ∈ K, v ∈ Rm. Therefore, if f(x, ξ) ∈ Bε

(
(p,X)

)
, then x ∈ K and

|ξ| ≤ C−1|Dxφ(ξ)| ≤ C−1(|X|+ ε),

i.e., f−1
(
Bε

(
(p,X)

))
⊂ K × BC−1(|X|+ε)(0) ⊂ U . So the condition (⋆) is satisfied and f is a homeomor-

phism.)
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