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Solution 3

1. Differentiability

Let M C R™ be an m-dimensional submanifold, F : M — R* a map and p € M. Show that the following

statements are equivalent.
(i) F is differentiable in p (as defined in the lecture).

(ii) There exists an open neighborhood V of p in R™ and a map F : V — RF differentiable at p with
Flvaym = Flvam.

Solution:

(i) = (it). By definition if F is differentiable at p, then there exists an open neighborhood U C R™ of 0
and a local parametrization f : U — f(U) C M with f(0) = p such that Fo f : U — RF is differentiable
at0eU.

By the implicit function theorem (injective version, A.3 in the lecture notes) applied to f, there exist
open neighborhoods V- C R™ of p, W C U x R*™ of (0,0) and a diffeomorphism ¢ : V' — W such that
©(p) = (0,0) and (p o f)(z) = (z,0) for all (z,0) € W.

Denote by m : W — U the projection onto the first m-coordinates and set U’ := {z € U : (z,0) € W}.
Notice that U’ is an open neighborhood of 0 and (¢ o f)(x) = (x,0) for all x € U’. Now for any ¢q € f(U’),
there exists a neighborhood B, C V of ¢ such that B,N M C f(U’) since f is a local parametrization. Let

V':= U B,CV. Then we have p € V' and V' N M C f(U'). Define F : V' — R* by
qef(U’)

Fim (Fof)orogly.
The map F is differentiable at p and it agrees with F on V' N M, indeed for ¢ = f(y) € V' N M C f(U'):
F(g)=Fofomopof(y)=Fofor(y0)=Fof(y)="F(q)

Remark: We needed to introduce the sets U’, V' because there might be points ¢ € V' N M which are not

in f(U) (this is similar to one of the proofs seen in class).

(i) = (i). Let V C R™ be an open neighborhood of p and let F : V — R* be a map which is
differentiable at p and such that F|yaa = Flvaar-

Let f : U — R"™ be a local parametrization of M at p with f(z) =p, x € U and f(U) C VN M. Then
Fo f=Fo fis differentiable at p and so by definition F' is differentiable at p.

2. Orientability

(i) Let W C R™ be an open set, f : W — R a C'-map and y € R a regular value of f. Prove that
M := f~'({y}) is an orientable submanifold.

(ii) Prove that the submanifolds SL(n,R) and SO(n,R) are orientable.

Solution:
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(i) By the regular value theorem M is a (n—1)-submanifold of R™ so in order to show that it’s orientable
we’ll construct a Gauss map N : M — S™~! (see Proposition 2.10 in the notes).

Since y is a regular value, it holds that df;, has rank 1 for all p in M and in particular V f(p) # 0. We
define

Vf(p)
Vi)

As the gradient, if not zero, is always perpendicular to the level sets of f (let v : (—¢,e) — M with
7(0) = p, then f(v(t)) =y = 0 = flimo f(7(t)) = dfp(v/(0)) = (Vf(p),7'(0))), this defines the desired
Gauss map.

N:M — §" 1

(ii) We showed in Exercise Sheet 2 that SL(n,R) = det™'(1) is the preimage of a regular value of a
map R™*"™ — R, hence orientability follows from part (i).

For SO(n,R) we will produce a compatible system of local parametrizations. The proof uses merely
the fact that G := SO(n,R) is not only a (sub)manifold, but also group, with smooth group operations
(g9,h) — gh and g — g~! (that is, G is a Lie group, and any Lie group is orientable).

Note first that for any g € G the left multiplication

Ly:G— G, Ly(A)=gA

is a smooth map: clearly the (linear) map A — gA from R™"*™ to R™*" is smooth, and thus the restriction
to G is smooth (compare Exercise 1). Similarly, L,-: is smooth, and L,-1 0 Ly = 1¢, so Ly is in fact a
diffeomorphism of G.

Now pick a basis (Xi,...,X,,) of the tangent space TG, at the neutral element, and put X;(g) :=
d(Lg)e(X;) for every g € G and ¢ = 1,...,m (in fact, since Ly is the restriction of a linear map, X;(g)
is just ¢gX;, but this is irrelevant). Since L, is a diffeomorphism of G,(X1(g),...,Xm(g)) is a basis of
TG, for every g € G. Furthermore, every X; is a smooth vector field on G' by smoothness of the group
operations.

For every g € G there exists a local parametrization
fo:Ug — fo(Ug) C G

such that U, is a connected open neighborhood of 0 € R™, f,(0) = g, and d(fy)o(e;) = Xi(g) for
i = 1,...,m, where {e;} is the standard basis of R™. To show that {fg}geG is a compatible sys-
tem, suppose that g,h € G and =z € Uy, y € Uy are such that fo(xz) = fi(y) =: p. Then the basis
(d(fg)ar(er)s- - d(fg)er(em)) of TGy, () is equivalent to (Xi(fy(z')),..., Xm(fy(z'))) for any 2" € U,
(since U, is connected and the determinant is non-zero and continuous on Uy, the sign of determinant
must be constantly positive). In particular, the basis (d(fy)z(€1),...,d(fy)z(em)) of TG, is equivalent to
(X1(p), ..., Xim(p)). Likewise, (d(fr)y(e1);---,d(fn)y(em)) is equivalent to (X1(p),..., Xm(p)), and so

(d(fg)z(er)s---,d(fg)z(em)) and  (d(fa)y(e1),...,d(fn)y(em))

are equivalent. Put V := fy(Uy) N fr(Uy) and o := f;, ' o f, [y — it (V). Since d(fy), =
d(fn)y © dipg, we have det(dy,) > 0.
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3. Angle-preserving parametrization

Let U C R™ be an open set and f : U — R™ an immersion. The map f is called angle-preserving if for
all x € U and &,n € TU, the angles between &, n and df,(£),df:(n) coincide. Here the angles are meant with

respect to the standard scalar products on R™ and R"™, respectively.

(i) Show that f is angle-preserving if and only if g;; = A\?;;, where g;; is the matrix of the first fundamental
form of f,d;; is the Kronecker delta and A : U — R is a differentiable function.

(ii) Find an angle-preserving parametrization of the 2 -sphere without North and South Pole, S*\{N, S} C R3,

of the form

fa,y) = (VI= 1) cos(x), I = R2(y) sin(a), hy) )

where h : R — R is a differentiable odd function.

Solution:

(i) Notice first that for an immersion, the condition of being angle-preserving corresponds to: for all

xz €U and &n e R™\ {0},
(o). dfe ) _ (€1
|df (&) |nldfz(n)|n |£|m|77|m’

where (-,-);, and (-,-),, denote the Euclidean scalar products in R™ and R™, respectively (these indices

will be omitted in the following).
Suppose that f is angle preserving. Then the matrix of the first fundamental form g of f in x satisfies

gij(l') = gw<ei7ej) = <dfw(ei)adfw(ej)>
= |df(e:)| |df(ej)[{ei, e5) = |dfz(e:)] [dfz(e;)] dij.

We now claim that |df;(e;)| = |dfz(e;)| for all z € U and 1, j. Indeed,

|dfi(e3)|? — |dfu(e;)|” = (dfu(ed), dfu(ed)) — (dfule;), dfa(e)))
= (dfe(ei) — dfa(e;), df(ei) + dfa(e;))
= (dfe(es — ')»dfr(ei"‘ej))
_ ldfa(ei — )] - |dfa(ei + €5))

lei —ej| - lei + ej]

<6i —€5,€; +6j> =0.

Thus g;; = A\?8;; for A : U — R,z + |df,(e1)|, which is differentiable since f is an immersion and hence
df:(e1) # 0 for any z € U.
Suppose now that g;; = A\24;;, then A # 0 on U since f is an immersion, and for £ = (z1,...,2y),n =

(yla"'aym) € R™ we have

m m

<df1 de Z TiyYj dfl € df.L 6] Z TiYj9ij = A szyz = /\ f 77>

3,j=1 1,0=1
In particular, this implies |df, (&) = |A]|£] for any £ € R™. Consequently,

(dfo(£), dfa(m)) _ X2(Em) _ (&)
O dE ()]~ NZIETl — TelTn]

for any &,n € R™\ {0}, so f is angle-preserving.
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(ii) We compute

—v/1—h(y)?sinx SR LAC) R
V1-h(y)?
B — 2 cos _ @@
f 1—h(y)?cosx i) sin x
—h(y
0 W (y)
and
1—h(y? 0
(9i5) = Jf Iy = ( 0 Ww? |-
1-h(y)?
From part (i) we know that f is angle-preserving if
K (y)?
1—h(y)? = —"—. 1
WP = T )

Since f is a parametrization of S?\ {N, S}, h € (—1,1) and we may assume without loss of generality that
R’ > 0. Then the differential equation (1) reduces to

1—h(y)* =H(y). (2)
Let g(x) := 5 log 1% for x € (—1,1). If h satisfies equation (2), then

(991 (6) = (B K () = s = 1.

so g(h(y)) =y + g(h(0)) = y since h is odd. Therefore, we obtain the solution

e —1

m = tanh(y)

h(y) =

for y € R (Another solution is of course h(y) = — tanh(y)).
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