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Solution 3

1. Differentiability

Let M ⊂ Rn be an m-dimensional submanifold, F : M −→ Rk a map and p ∈ M . Show that the following

statements are equivalent.

(i) F is differentiable in p (as defined in the lecture).

(ii) There exists an open neighborhood V of p in Rn and a map F̄ : V −→ Rk differentiable at p with

F̄ |V ∩M = F |V ∩M .

Solution:

(i) ⇒ (ii). By definition if F is differentiable at p, then there exists an open neighborhood U ⊂ Rm of 0

and a local parametrization f : U −→ f(U) ⊂M with f(0) = p such that F ◦f : U −→ Rk is differentiable

at 0 ∈ U .

By the implicit function theorem (injective version, A.3 in the lecture notes) applied to f , there exist

open neighborhoods V ⊂ Rn of p, W ⊂ U × Rn−m of (0, 0) and a diffeomorphism φ : V −→ W such that

φ(p) = (0, 0) and (φ ◦ f)(x) = (x, 0) for all (x, 0) ∈W .

Denote by π :W −→ U the projection onto the first m-coordinates and set U ′ := {x ∈ U : (x, 0) ∈W}.
Notice that U ′ is an open neighborhood of 0 and (φ ◦ f)(x) = (x, 0) for all x ∈ U ′. Now for any q ∈ f(U ′),

there exists a neighborhood Bq ⊂ V of q such that Bq ∩M ⊂ f(U ′) since f is a local parametrization. Let

V ′ :=
⋃

q∈f(U ′)

Bq ⊂ V . Then we have p ∈ V ′ and V ′ ∩M ⊂ f(U ′). Define F̄ : V ′ −→ Rk by

F̄ := (F ◦ f) ◦ π ◦ φ|V ′ .

The map F̄ is differentiable at p and it agrees with F on V ′ ∩M , indeed for q = f(y) ∈ V ′ ∩M ⊂ f(U ′):

F̄ (q) = F ◦ f ◦ π ◦ φ ◦ f(y) = F ◦ f ◦ π(y, 0) = F ◦ f(y) = F (q)

Remark: We needed to introduce the sets U ′, V ′ because there might be points q ∈ V ∩M which are not

in f(U) (this is similar to one of the proofs seen in class).

(ii) ⇒ (i). Let V ⊂ Rn be an open neighborhood of p and let F̄ : V −→ Rk be a map which is

differentiable at p and such that F̄ |V ∩M = F |V ∩M .

Let f : U −→ Rn be a local parametrization of M at p with f(x) = p, x ∈ U and f(U) ⊂ V ∩M . Then

F ◦ f = F̄ ◦ f is differentiable at p and so by definition F is differentiable at p.

2. Orientability

(i) Let W ⊂ Rn be an open set, f : W −→ R a C1-map and y ∈ R a regular value of f . Prove that

M := f−1({y}) is an orientable submanifold.

(ii) Prove that the submanifolds SL(n,R) and SO(n,R) are orientable.

Solution:
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(i) By the regular value theoremM is a (n−1)-submanifold of Rn so in order to show that it’s orientable

we’ll construct a Gauss map N :M −→ Sn−1 (see Proposition 2.10 in the notes).

Since y is a regular value, it holds that dfp has rank 1 for all p in M and in particular ∇f(p) ̸= 0. We

define

N :M −→ Sn−1, p 7−→ ∇f(p)
|∇f(p)|

.

As the gradient, if not zero, is always perpendicular to the level sets of f (let γ : (−ε, ε) → M with

γ(0) = p, then f(γ(t)) ≡ y ⇒ 0 = d
dt |t=0 f(γ(t)) = dfp(γ

′(0)) = ⟨∇f(p), γ′(0)⟩), this defines the desired

Gauss map.

(ii) We showed in Exercise Sheet 2 that SL(n,R) = det−1(1) is the preimage of a regular value of a

map Rn×n −→ R, hence orientability follows from part (i).

For SO(n,R) we will produce a compatible system of local parametrizations. The proof uses merely

the fact that G := SO(n,R) is not only a (sub)manifold, but also group, with smooth group operations

(g, h) 7→ gh and g 7→ g−1 (that is, G is a Lie group, and any Lie group is orientable).

Note first that for any g ∈ G the left multiplication

Lg : G −→ G, Lg(A) = gA

is a smooth map: clearly the (linear) map A 7→ gA from Rn×n to Rn×n is smooth, and thus the restriction

to G is smooth (compare Exercise 1). Similarly, Lg−1 is smooth, and Lg−1 ◦ Lg = 1G, so Lg is in fact a

diffeomorphism of G.

Now pick a basis (X1, . . . , Xm) of the tangent space TGe at the neutral element, and put Xi(g) :=

d(Lg)e(Xi) for every g ∈ G and i = 1, . . . ,m (in fact, since Lg is the restriction of a linear map, Xi(g)

is just gXi, but this is irrelevant). Since Lg is a diffeomorphism of G, (X1(g), . . . , Xm(g)) is a basis of

TGg for every g ∈ G. Furthermore, every Xi is a smooth vector field on G by smoothness of the group

operations.

For every g ∈ G there exists a local parametrization

fg : Ug −→ fg(Ug) ⊂ G

such that Ug is a connected open neighborhood of 0 ∈ Rm, fg(0) = g, and d(fg)0(ei) = Xi(g) for

i = 1, . . . ,m, where {ei} is the standard basis of Rm. To show that {fg}g∈G is a compatible sys-

tem, suppose that g, h ∈ G and x ∈ Ug, y ∈ Uh are such that fg(x) = fh(y) =: p. Then the basis

(d(fg)x′(e1), . . . , d(fg)x′(em)) of TGfg(x′) is equivalent to (X1(fg(x
′)), . . . , Xm(fg(x

′))) for any x′ ∈ Ug

(since Ug is connected and the determinant is non-zero and continuous on Ug, the sign of determinant

must be constantly positive). In particular, the basis (d(fg)x(e1), . . . , d(fg)x(em)) of TGp is equivalent to

(X1(p), . . . , Xm(p)). Likewise, (d(fh)y(e1), . . . , d(fh)y(em)) is equivalent to (X1(p), . . . , Xm(p)), and so

(d(fg)x(e1), . . . , d(fg)x(em)) and (d(fh)y(e1), . . . , d(fh)y(em))

are equivalent. Put V := fg(Ug) ∩ fh(Uh) and ψ := f−1
h ◦ fg : f−1

g (V ) −→ f−1
h (V ). Since d(fg)x =

d(fh)y ◦ dψx, we have det(dψx) > 0.
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3. Angle-preserving parametrization

Let U ⊂ Rm be an open set and f : U −→ Rn an immersion. The map f is called angle-preserving if for

all x ∈ U and ξ, η ∈ TUx the angles between ξ, η and dfx(ξ), dfx(η) coincide. Here the angles are meant with

respect to the standard scalar products on Rm and Rn, respectively.

(i) Show that f is angle-preserving if and only if gij = λ2δij , where gij is the matrix of the first fundamental

form of f, δij is the Kronecker delta and λ : U −→ R is a differentiable function.

(ii) Find an angle-preserving parametrization of the 2 -sphere without North and South Pole, S2\{N,S} ⊂ R3,

of the form

f(x, y) =
(√

1− h2(y) cos(x),
√

1− h2(y) sin(x), h(y)
)
,

where h : R −→ R is a differentiable odd function.

Solution:

(i) Notice first that for an immersion, the condition of being angle-preserving corresponds to: for all

x ∈ U and ξ, η ∈ Rm \ {0},
⟨dfx(ξ), dfx(η)⟩n
|dfx(ξ)|n|dfx(η)|n

=
⟨ξ, η⟩m
|ξ|m|η|m

,

where ⟨·, ·⟩m and ⟨·, ·⟩n denote the Euclidean scalar products in Rm and Rn, respectively (these indices

will be omitted in the following).

Suppose that f is angle preserving. Then the matrix of the first fundamental form g of f in x satisfies

gij(x) = gx(ei, ej) = ⟨dfx(ei), dfx(ej)⟩

= |dfx(ei)| |dfx(ej)|⟨ei, ej⟩ = |dfx(ei)| |dfx(ej)| δij .

We now claim that |dfx(ei)| = |dfx(ej)| for all x ∈ U and i, j. Indeed,

|dfx(ei)|2 − |dfx(ej)|2 = ⟨dfx(ei), dfx(ei)⟩ − ⟨dfx(ej), dfx(ej)⟩

= ⟨dfx(ei)− dfx(ej), dfx(ei) + dfx(ej)⟩

= ⟨dfx(ei − ej), dfx(ei + ej)⟩

=
|dfx(ei − ej)| · |dfx(ei + ej)|

|ei − ej | · |ei + ej |
⟨ei − ej , ei + ej⟩ = 0.

Thus gij = λ2δij for λ : U −→ R, x 7→ |dfx(e1)|, which is differentiable since f is an immersion and hence

dfx(e1) ̸= 0 for any x ∈ U .

Suppose now that gij = λ2δij , then λ ̸= 0 on U since f is an immersion, and for ξ = (x1, . . . , xm), η =

(y1, . . . , ym) ∈ Rm we have

⟨dfx(ξ), dfx(η)⟩ =
m∑

i,j=1

xiyj⟨dfx(ei), dfx(ej)⟩ =
m∑

i,j=1

xiyjgij = λ2
m∑
i=1

xiyi = λ2⟨ξ, η⟩.

In particular, this implies |dfx(ξ)| = |λ| |ξ| for any ξ ∈ Rm. Consequently,

⟨dfx(ξ), dfx(η)⟩
|dfx(ξ)| |dfx(η)|

=
λ2⟨ξ, η⟩
λ2|ξ| |η|

=
⟨ξ, η⟩
|ξ| |η|

for any ξ, η ∈ Rm \ {0}, so f is angle-preserving.
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(ii) We compute

Jf =


−
√
1− h(y)2 sinx − h(y)h′(y)√

1−h(y)2
cosx√

1− h(y)2 cosx − h(y)h′(y)√
1−h(y)2

sinx

0 h′(y)


and

(gij) = JT
f Jf =

(
1− h(y)2 0

0 h′(y)2

1−h(y)2

)
.

From part (i) we know that f is angle-preserving if

1− h(y)2 =
h′(y)2

1− h(y)2
. (1)

Since f is a parametrization of S2 \ {N,S}, h ∈ (−1, 1) and we may assume without loss of generality that

h′ ≥ 0. Then the differential equation (1) reduces to

1− h(y)2 = h′(y). (2)

Let g(x) := 1
2 log

1+x
1−x for x ∈ (−1, 1). If h satisfies equation (2), then

(g ◦ h)′(y) = g′(h(y))h′(y) =
h′(y)

1− h(y)2
= 1,

so g(h(y)) = y + g(h(0)) = y since h is odd. Therefore, we obtain the solution

h(y) =
e2y − 1

e2y + 1
= tanh(y)

for y ∈ R (Another solution is of course h(y) = − tanh(y)).
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