Solution 4

1. Tubular surface

Let $c:[0,L]\to\mathbb{R}^3$ be a smooth Frenet curve, parametrized by arc-length with normal vector n and binormal vector b. Show that if r>0 is sufficiently small, then the tubular surface $f:[0,L]\times\mathbb{R}\to\mathbb{R}^3$ around c defined by

$$f(t,\varphi) := c(t) + r(\cos\varphi \cdot n(t) + \sin\varphi \cdot b(t))$$

is regular and the area of $f|_{[0,L]\times[0,2\pi)}$ equals $2\pi rL$.

Solution:

Recall that $e := e_1 = \dot{c}$, $n := e_2$ and $b := e_3 = e \times n$. Hence we have the relations

$$e \times n = b$$
, $b \times e = n$, $n \times b = e$.

With this notation we also have

$$\begin{pmatrix} \dot{e} \\ \dot{n} \\ \dot{b} \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} e \\ n \\ b \end{pmatrix}.$$

In order to show that f is an immersion for r small enough, we begin by computing $\frac{\partial f}{\partial t}(t,\varphi)$ and $\frac{\partial f}{\partial \varphi}(t,\varphi)$:

$$\begin{split} \frac{\partial f}{\partial t}(t,\varphi) &= \dot{c}(t) + r \big(\cos\varphi \cdot \dot{n}(t) + \sin\varphi \cdot \dot{b}(t)\big) \\ &= \dot{c}(t) + r \Big(\cos\varphi \big(-\kappa(t) \cdot e(t) + \tau(t) \cdot b(t)\big) - \tau(t)\sin\varphi \cdot n(t)\Big) \\ &= \big(1 - r\kappa(t)\cos\varphi\big)e(t) + r\tau(t)\cos\varphi \cdot b(t) - r\tau(t)\sin\varphi \cdot n(t), \end{split}$$

and

$$\frac{\partial f}{\partial \varphi}(t,\varphi) = -r\sin\varphi \cdot n(t) + r\cos\varphi \cdot b(t).$$

Using the above relations, a computation shows that

$$\frac{\partial f}{\partial t}(t,\varphi) \times \frac{\partial f}{\partial \varphi}(t,\varphi) = r(r\kappa(t)\cos\varphi - 1)(\sin\varphi \cdot b(t) + \cos\varphi \cdot n(t)),$$

hence

$$\left|\frac{\partial f}{\partial t}(t,\varphi) \times \frac{\partial f}{\partial \varphi}(t,\varphi)\right| = |r(r\kappa(t)\cos\varphi - 1)|.$$

This shows that if $r < \min_{t \in [0,L]} \frac{1}{\kappa(t)}$, then $1 - r\kappa(t) \cos \varphi > 0$, so $|\frac{\partial f}{\partial t}(t,\varphi) \times \frac{\partial f}{\partial \varphi}(t,\varphi)| \neq 0$ and $\frac{\partial f}{\partial t}(t,\varphi)$, $\frac{\partial f}{\partial \varphi}(t,\varphi)$ are linearly independent. Therefore $df_{t,\varphi}$ has rank 2 and f is an immersion.

In order to computer the area of $f|_{[0,L]\times[0,2\pi)}$, we need to compute the determinant of the matrix (g_{ij}) of the first fundamental form of f:

$$\sqrt{\det(g_{ij}(t,\varphi))} = \operatorname{Area}(\operatorname{span}(\frac{\partial f}{\partial t}(t,\varphi), \frac{\partial f}{\partial \varphi}(t,\varphi))) = \left|\frac{\partial f}{\partial t}(t,\varphi) \times \frac{\partial f}{\partial \varphi}(t,\varphi)\right|.$$

Thus

$$\operatorname{Area}(f|_{[0,L]\times[0,2\pi)}) = \int_0^L \int_0^{2\pi} r(1 - r\kappa(t)\cos\varphi) \,d\varphi dt$$
$$= \int_0^L (2\pi r - 0) \,dt$$
$$= 2\pi r L.$$

2. Torus

Let a > r > 0 and $f: \mathbb{R}^2 \to \mathbb{R}^3$ be the parametrization of a torus T, defined as

$$f(x,y) := ((a+r\cos x)\cos y, (a+r\cos x)\sin y, r\sin x).$$

Prove that:

- (a) If a geodesic is at some point tangential to the circle $x = \frac{\pi}{2}$ then it must be contained in the region of T with $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.
- (b) Suppose that a geodesic $c: \mathbb{R} \to T$, which crosses the circle x = 0 with an angle $\theta \in (0, \frac{\pi}{2})$, also intersects the circle $x = \pi$, then

$$\cos \theta \le \frac{a-r}{a+r}$$
.

Solution:

(a) Suppose that the geodesic $c: I \to T$ intersects the circle $x = \pi/2$ tangentially at time t_0 . We write $\theta(t) \in [0, \pi]$ for the angle between $\dot{c}(t)$ and the horizontal circle intersecting c(t) at time t and $r(t) = a + r \cos(x(t))$ for the distance between c(t) and the z-axis.

It is given that $r(t_0) = a$ and $\theta(t_0) = 0$. By Clairaut's condition

$$r(t)\cos\theta(t) = r(t_0)\cos\theta(t_0) = a$$

for all $t \in I$ and hence $r(t) \ge a$ for all $t \in I$. We conclude that $-\pi/2 \le x(t) \le \pi/2$.

(b) Suppose that the geodesic c intersects the horizontal circle x=0 at time t_0 with an angle $\theta(t_0)=\theta$ and the horizontal circle $x=\pi$ at time t_1 with an angle $\theta(t_1)$. By Clairaut's condition it holds that

$$a - r \ge r(t_1)\cos\theta(t_1) = r(t_0)\cos\theta(t_0) = (a + r)\cos\theta,$$

from which we deduce that

$$\cos \theta \le \frac{a-r}{a+r}.$$

3. Energy

Let $M \subset \mathbb{R}^n$ be a submanifold, $c_0 : [a, b] \to M$ a smooth curve and

$$E(c_0) := \frac{1}{2} \int_a^b |\dot{c}_0(t)|^2 dt$$

its energy.

- (a) Show that $L(c_0)^2 \leq 2(b-a)E(c_0)$ with an equality if and only if c_0 is parametrized proportionally to arc-length.
- (b) Compute $\frac{d}{ds}\big|_{s=0} E(c_s)$ for a smooth variation $\{c_s\}_{s\in(-\varepsilon,\varepsilon)}$ of c_0 in M.
- (c) Characterize geodesics in M using the energy.

Solution:

(a) From the Cauchy-Schwarz inequality it follows that

$$L(c_0)^2 = \left(\int_a^b |\dot{c}_0(t)| \, dt\right)^2 = \left(\int_a^b |\dot{c}_0(t)| \cdot 1 \, dt\right)^2$$

$$\leq \int_a^b |\dot{c}_0|^2 \, dt \cdot \int_a^b 1^2 \, dt = 2(b-a)E(c_0).$$

Equality holds if and only if $|\dot{c}_0|$ and 1 are linearly dependent in $L^2([a,b])$, that is, if and only if $|\dot{c}_0|$ is constant.

(b) Denote by $V_s(t) := \frac{\partial}{\partial s} c_s(t)$ the variation vector field associated to the variation $\{c_s\}$. Then we claim that

$$\frac{d}{ds}\bigg|_{s=0} E(c_s) = g(\dot{c}_0(t), V_0(t))\bigg|_a^b - \int_a^b g\left(\frac{D}{dt}\dot{c}_0(t), V_0(t)\right) dt.$$

Indeed,

$$\begin{split} \frac{d}{ds}\bigg|_{s=0} E(c_s) &= \left.\frac{d}{ds}\right|_{s=0} \frac{1}{2} \int_a^b g(\dot{c}_s(t), \dot{c}_s(t)) \, dt \\ &= \left.\frac{1}{2} \int_a^b \left.\frac{d}{ds}\right|_{s=0} g(\dot{c}_s(t), \dot{c}_s(t)) \, dt \\ &= \int_a^b g\Big(\dot{c}_0(t), \left.\frac{d^2}{ds \, dt}\right|_{s=0} c_s(t)\Big) \, dt \\ &= \int_a^b g\Big(\dot{c}_0(t), \frac{d}{dt} V_0(t)\Big) \, dt \\ &= \int_a^b g\Big(\dot{c}_0(t), \frac{D}{dt} V_0(t)\Big) \, dt \\ &= \int_a^b \frac{d}{dt} g(\dot{c}_0(t), V_0(t)) \, dt - \int_a^b g\Big(\frac{D}{dt} \dot{c}_0(t), V_0(t)\Big) \, dt \\ &= g(\dot{c}_0(t), V_0(t))\Big|_a^b - \int_a^b g\Big(\frac{D}{dt} \dot{c}_0(t), V_0(t)\Big) \, dt. \end{split}$$

(c) We claim that $c_0:[a,b]\to M$ is a geodesic if and only if $\frac{d}{ds}\big|_{s=0}E(c_s)=0$ for all proper variations $\{c_s\}_{s\in(-\varepsilon,\varepsilon)}$ of c_0 in M.

First notice that $V_0(a) = V_0(b) = 0$ for the variation vector field V_s of a proper variation, hence from (b):

$$\frac{d}{ds}\bigg|_{s=0} E(c_s) = -\int_a^b g\left(\frac{D}{dt}\dot{c}_0(t), V_0(t)\right) dt.$$

If c_0 is a geodesic, then $\frac{D}{dt}\dot{c}_0(t) = 0$ and hence

$$\left. \frac{d}{ds} \right|_{s=0} E(c_s) = 0.$$

On the other hand if c_0 is not a geodesic, there exists $t_0 \in (a, b)$ with $\frac{D}{dt}\dot{c}_0(t_0) \neq 0$. Let $f: U \subset \mathbb{R}^m \to M$ be a local parametrization of M with $f(0) = c(t_0)$. Set $\xi := (df_0)^{-1} \left(\frac{D}{dt}\dot{c}_0(t_0)\right)$. Take $r, \delta > 0$ small enough such that $[t_0 - r, t_0 + r] \subset [a, b]$, $c(t) \in f(U)$ for all $t \in [t_0 - r, t_0 + r]$ and

$$\left\langle \frac{D}{dt}\dot{c}_0(t), df_{\gamma_0(t)}(\xi) \right\rangle \ge \delta$$

for all $t \in [t_0 - r, t_0 + r]$, where $\gamma_0 := f^{-1} \circ c_0$. (This is possible since $df_{\gamma_0(t_0)} = df_{f^{-1}(c_0(t_0))} = df_0$.) Take $h: [a, b] \to [0, 1]$ a smooth function with

$$h(t) = \begin{cases} 1, & |t - t_0| \le \frac{r}{2}, \\ 0, & |t - t_0| \ge \frac{3r}{4}. \end{cases}$$

Now we'll define a proper variation of $c = c_0$. Since $\gamma_0([t_0 - r, t_0 + r])$ is a compact subset of U, there exists $\varepsilon > 0$ such that $\gamma_0(t) + v \in U$ for any $t \in [t_0 - r, t_0 + r]$, $v \in \mathbb{R}^m$ with $|v| \le \varepsilon |\xi|$. For $s \in (-\varepsilon, \varepsilon)$, let $c_s : [a, b] \to M$

$$c_s(t) := \begin{cases} c_0(t), & |t - t_0| \ge r, \\ f(\gamma_0(t) - s h(t) \cdot \xi), & |t - t_0| \le r. \end{cases}$$

Then

$$V_0(t) = \frac{d}{ds} \Big|_{s=0} c_s(t) = \begin{cases} 0, & |t - t_0| \ge r, \\ df_{\gamma_0(t)}(-h(t) \cdot \xi), & |t - t_0| \le r, \end{cases}$$

hence

$$\frac{d}{ds}\Big|_{s=0} E(c_s) = -\int_a^b g\left(\frac{D}{dt}\dot{c}_0(t), V_0(t)\right) dt$$

$$= -\int_{t_0-r}^{t_0+r} \left\langle \frac{D}{dt}\dot{c}_0(t), df_{\gamma_0(t)}(-h(t) \cdot \xi) \right\rangle dt$$

$$= \int_{t_0-r}^{t_0+r} h(t) \cdot \left\langle \frac{D}{dt}\dot{c}_0(t), df_{\gamma_0(t)}(\xi) \right\rangle dt$$

$$\ge \int_{t_0-\frac{r}{2}}^{t_0+\frac{r}{2}} \delta dt$$

$$= r\delta > 0.$$

Therefore we have found a proper variation of c with $\frac{d}{ds}|_{s=0} E(c_s) \neq 0$.