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Solution 5

1. Elliptic Points

A point p ∈ M ⊂ Rm+1 on a hypersurface is called elliptic if the second fundamental form is (positive or

negative) definite. Show that if M is compact then it has elliptic points.

Solution:

Since M is compact, it is closed and bounded. Hence there exists a radius R > 0 such that M is contained

in B̄R(0) and the boundary S := Sm
R (0) = ∂B̄R(0) touches M in (at least) one point p ∈ M .

As S touches M in p, it holds that TSp = TMp. In a neighborhood of p one can write M as a graph

over TMp: let f be such a local parametrization, so (upon a translation and an orthogonal transformation

if necessary) we have

f(x1, . . . , xm) = (x1, . . . , xm, b(x1, . . . , xm))

with b(0, . . . , 0) = 0 and ∇b(0, . . . , 0) = 0.

As seen in class the matrix of the second fundamental form of f is given by

(hij) =
1√

1 + |∇b|2
Hess(b),

where Hess(b) := (bij) is the Hessian matrix of b. In particular it holds that (hij(0)) = Hess0(b) = (bij(0)).

The sphere S can also be locally parametrized around p by

g(x1, . . . , xm) := (x1, . . . , xm, s(x1, . . . , xm))

with s(x) = R−
√
R2 − |x|2. Notice that s(0) = 0, ∇s = 0 and Hess0(s) = (sij(0)) =

1
R1.

Moreover, since M is contained the closed ball bounded by S, we have that b(x) ≥ s(x). Therefore a

Taylor-expansion around 0 show that

b(x) =
1

2
xTHess0(b)x+O

(
|x|3
)
≥ s(x) =

1

2
xTHess0(s)x+O

(
|x|3
)
=

1

2R
|x|2 +O

(
|x|3
)
,

from which we deduce that yTHess0(b)y ≥ 1
R |y|2 for any y ∈ Rm, which shows that (hij(0)) = Hess0(b) is

positive definite and p is an elliptic point.

2. Mean Curvature

Let M ⊂ R3 be a surface and p ∈ M a point. Fix 0 ̸= v0 ∈ TMp. Let H(p) be the mean curvature in p and

denote by κp(θ) := hp(v, v) the normal curvature in direction v, where v ∈ TMp, |v| = 1, forms an angle θ with

v0.

Prove that

H(p) =
1

π

ˆ π

0

κp(θ) dθ.

Solution:
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Let (e1, e2) be an orthonormal basis of TMp consisting of principal curvature directions, i.e. Lpei = κiei,

for i = 1, 2.

If v0 = λ(cos θ0 · e1 + sin θ0 · e2) for some λ > 0, then the vector v at an angle θ with v0 is given by

v(θ) = cos(θ0 + θ) · e1 + sin(θ0 + θ) · e2.

Then we can compute the normal curvature as follows:

κp(θ) = hp(v(θ), v(θ)) = gp(v(θ), Lp(v(θ)))

= ⟨cos(θ0 + θ) · e1 + sin(θ0 + θ) · e2, κ1 cos(θ0 + θ) · e1 + κ2 sin(θ0 + θ) · e2⟩

= κ1 cos
2(θ0 + θ) + κ2 sin

2(θ0 + θ)

from which we obtain
ˆ π

0

kp(θ) dθ = κ1 ·
ˆ π

0

cos2(θ0 + θ) dθ + κ2 ·
ˆ π

0

sin2(θ0 + θ) dθ

= κ1 ·
π

2
+ κ2 ·

π

2
=

1

2
(κ1 + κ2) · π = H(p) · π,

so H(p) = 1
π

´ π
0

kp(θ) dθ.

3. Local Isometries

Let f, f̃ : R≥0 × R → R3 be two immersions, given by

f(x, y) := (x sin y, x cos y, log x),

f̃(x, y) := (x sin y, x cos y, y).

a) Show that f and f̃ have the same Gauss curvature (as functions of (x, y)).

b) Are f and f̃ (locally) isometric?

Hint: Consider the level sets of the Gauss curvature and the curves orthogonal to these.

Solution:

a) We begin by computing the partial derivatives of f and the Gauss map:

fx(x, y) = (sin y, cos y,
1

x
), fy(x, y) = (x cos y,−x sin y, 0),

fxx(x, y) = (0, 0,− 1

x2
), fyy(x, y) = (−x sin y,−x cos y, 0),

fxy(x, y) = fyx(x, y) = (cos y,− sin y, 0),

ν =
fx × fy
|fx × fy|

=
1√

1 + x2
(sin y, cos y,−x).

Thus
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(gij) = (⟨fi, fj⟩) =

(
1 + 1

x2 0

0 x2

)
,

(hij) = (⟨fij , ν⟩) =
1√

1 + x2

(
1
x 0

0 −x

)
and therefore

K(x, y) =
det(hij)

det(gij)
=

− 1
1+x2

1 + x2
= − 1

(1 + x2)2
.

Analogously for f̃ we have

f̃x(x, y) = (sin y, cos y, 0), f̃y(x, y) = (x cos y,−x sin y, 1),

f̃xx(x, y) = (0, 0, 0), f̃yy(x, y) = (−x sin y,−x cos y, 0),

f̃xy(x, y) = f̃yx(x, y) = (cos y,− sin y, 0),

ν̃ =
f̃x × f̃y

|f̃x × f̃y|
=

1√
1 + x2

(cos y,− sin y,−x),

and

(g̃ij) =
(
⟨f̃i, f̃j⟩

)
=

(
1 0

0 1 + x2

)
,

(
h̃ij

)
=
(
⟨f̃ij , ν̃⟩

)
=

1√
1 + x2

(
0 1

1 0

)
from which

K̃(x, y) =
det(h̃ij)

det(g̃ij)
=

− 1
1+x2

1 + x2
= − 1

(1 + x2)2
,

so K(x, y) = K̃(x, y).

b) We claim that f and f̃ are not locally isometric. Let (x0, y0) ∈ R≥0× R. Suppose there exist a

neighborhood U ⊂ R≥0 × R of (x0, y0) and an isometry φ : (U, g) → (φ(U), g̃). We write φ(x, y) =

(x̃(x, y), ỹ(x, y)). As the Gauss curvature is intrinsic we have K(x, y) = K̃(φ(x, y)) = K̃(x̃, ỹ), that is

− 1

(1 + x2)2
= − 1

(1 + x̃2)2
,

and hence x̃(x, y) = x, which implies that φ(x, y) = (x, ỹ(x, y)).

Notice that the Gauss curvature is constant on curves with constant x-coordinate. Now consider a

curve γ(t) = (u(t), y0) with u(0) = x0, parametrized by arc length (with respect to g). The curve γ runs

perpendicularly to curves with constant Gauss curvature (with respect to g). Its image γ̃ := φ ◦ γ must

also be parametrized by arc length and run perpendicularly to curves with constant Gauss curvature (with

respect to g̃). Hence γ̃(t) = (u(t), ỹ0), where ỹ0 := ỹ(x0, y0), and | ˙̃γ(t)|g̃ = |u̇(t)| = 1, so u(t) = x0 ± t.

Therefore we obtain

|γ̇(t)|g =

√
1 +

1

u2(t)
̸= 1,

a contradiction to the fact that γ is parametrized by arc length with respect to g.

Alternative solution:
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Now notice that since φ is an isometry it holds that the matrix of the first fundamental form of f̃

in φ(x, y) = (x, ỹ) with respect to the basis (ẽ1, ẽ2) := (dφ(x,y)(e1), dφ(x,y)(e2)) of T Ũx,ỹ (Ũ := φ(U))

coincides with (gij(x, y)) and is therefore given by

(
g̃ij(x, ỹ)

)
(ẽ1,ẽ2)

=

(
1 + 1

x2 0

0 x2

)
.

On the other hand the matrix of the first fundamental form of f with respect to the standard basis is given

by (g̃ij(x, ỹ))(e1,e2) = (g̃ij(x, ỹ)) and was computed in a).

The matrix of change of basis from (e1, e2) to (ẽ1, ẽ2) is given exactly by

M := dφ(x,y) =

(
1 0

a b

)
for some a, b. Thus it must hold that(

g̃ij(x, ỹ)
)
(ẽ1,ẽ2)

= MT ·
(
g̃ij(x, ỹ)

)
(e1,e2)

·M,

which is equivalent to 
1 + a2(1 + x2) = 1 + 1

x2 ,

ab(1 + x2) = 0,

b2(1 + x2) = x2.

But the above system has no solutions for x ∈ R≥0. Contradiction arises.
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