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Solution 5

1. Elliptic Points

A point p € M C R™*! on a hypersurface is called elliptic if the second fundamental form is (positive or

negative) definite. Show that if M is compact then it has elliptic points.

Solution:

Since M is compact, it is closed and bounded. Hence there exists a radius R > 0 such that M is contained
in Br(0) and the boundary S := S%(0) = dBr(0) touches M in (at least) one point p € M.

As S touches M in p, it holds that T'S, = T'M,,. In a neighborhood of p one can write M as a graph
over TM,: let f be such a local parametrization, so (upon a translation and an orthogonal transformation

if necessary) we have

with 5(0,...,0) =0 and Vb(0,...,0) =0.
As seen in class the matrix of the second fundamental form of f is given by

1
hij) = —————H
(hij) V1+|Vb]?

where Hess(b) := (b;;) is the Hessian matrix of b. In particular it holds that (h;;(0)) = Hesso(b) = (b;;(0)).
The sphere S can also be locally parametrized around p by

ess(b),

with s(z) = R — \/R? — |z|2. Notice that s(0) =0, Vs = 0 and Hesso(s) = (s;;(0)) = £1.
Moreover, since M is contained the closed ball bounded by S, we have that b(z) > s(z). Therefore a

Taylor-expansion around 0 show that
1 1 1
b(x) = ixTHesso(b)x + 0 (|z*) = s(z) = 5xTHesso(s)a: + 0 (|z’) = ﬁmQ +0 (|z?),

from which we deduce that yTHesso(b)y > %|y|* for any y € R™, which shows that (h;;(0)) = Hesso(b) is
positive definite and p is an elliptic point.

2. Mean Curvature

Let M C R? be a surface and p € M a point. Fix 0 # vy € TM,,. Let H(p) be the mean curvature in p and
denote by k,(0) := hy(v,v) the normal curvature in direction v, where v € T'M,, |v| = 1, forms an angle 6 with
vg.

Prove that

Solution:
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Let (e1,e2) be an orthonormal basis of T'M,, consisting of principal curvature directions, i.e. Lye; = K;e;,
fori=1,2.

If vg = A(cos by - e1 +sinfy - e2) for some A > 0, then the vector v at an angle 6 with vg is given by
U(Q) = COS(Q() + 9) -e1 + sin(HO + 9) - €.
Then we can compute the normal curvature as follows:

tip(0) = hy(v(0), v(0)) = gp(v(6), Lp(v(0)))
= (cos(fp + 0) - e1 +sin(0g + 0) - ea, k1 cos(Bg + 0) - e1 + kasin(fy + 0) - e2)
= k1 cos?(0g + 0) + ko sin®(0y + 0)

from which we obtain

T

/ k,(0) d9:m1~/ cos?(0 + 0) d9+l€2-/ sin?(fy + 6) df
0 0 0
™

T 1
:m'§+fiz'§25(“1—#%2)'”:1{(29)'777

so H(p) = 2 [ ky(6) db.

3. Local Isometries

Let f, f: Rso x R — R3 be two immersions, given by
f@.y) = (zsiny, zcosy, log ),
f(xa y) = (zsiny, xcosy, y).
a) Show that f and f have the same Gauss curvature (as functions of (z,y)).

b) Are f and f (locally) isometric?

Hint: Consider the level sets of the Gauss curvature and the curves orthogonal to these.

Solution:

a) We begin by computing the partial derivatives of f and the Gauss map:

1
fz(xvy> = (Siny,cosy, 7)7 fy(x7y) = (xCOSZ/a _935111?/»0)7
x

1 .
fm(%y) = (0a0>_ﬁ)7 fyy(xvy) = (_‘TSIHya —!L'COS:I/,O),

fwy($7y) = fyx(x;y> = (COSy7 _Sinyao)a

X
. fa fy _ (siny, cosy, —x).

TR x T Vita?

Thus
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0 x?

1 $ 0
(hiy) = ((fij> ) = Vit a2 (0 x)

(9i5) = ({fi, [3)) = (1 T O) ;

and therefore

- det(gi;) T 1422 (14 22)%
Analogously for f we have

fo(@,y) = (siny,cosy,0), f,(z,y) = (vcosy, —wsiny, 1),
foo(z,y) = (0,0,0), fyy(z,y) = (—zsiny, —z cosy,0),
f$y(x7y) = fyw(xay) = (COS% _Siny70)7

F o )
U= Ja X Jy = (cosy, —siny, —x),

|facxfy| V14 a?

and

6) = (172 F)) = (3 1 fx> ,

(iL”) = ((Jgijvl~/>) = ﬁ <(1) (1)>

from which

. det(hy;)) —1i= 1
(z,9) det(g;)  1+a2  (1+a2)2

so K(2,9) = K(z,y).
b) We claim that f and f are not locally isometric. Let (z0,9y0) € R>gx R. Suppose there exist a
neighborhood U C Rxsg x R of (x¢,yo) and an isometry ¢: (U,g) — (p(U),§). We write p(z,y) =

(Z(x,y), j(z,y)). As the Gauss curvature is intrinsic we have K (z,y) = K(¢(z,y)) = K(&,§), that is

1 1

(1+22)2 (1+32)%
and hence Z(z,y) = x, which implies that ¢(z,y) = (z,§(x,y)).

Notice that the Gauss curvature is constant on curves with constant xz-coordinate. Now consider a
curve y(t) = (u(t),yo) with u(0) = zg, parametrized by arc length (with respect to g). The curve + runs
perpendicularly to curves with constant Gauss curvature (with respect to g). Its image ¥ := ¢ oy must
also be parametrized by arc length and run perpendicularly to curves with constant Gauss curvature (with
respect to §). Hence 7(t) = (u(t),vo), where 5o := §(z0,%0), and |3(t)|; = |u(t)] = 1, so u(t) = zo £ ¢.
Therefore we obtain

1

u?(t)

a contradiction to the fact that « is parametrized by arc length with respect to g.

F(@®)lg = /1 + # 1,

Alternative solution:
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Now notice that since ¢ is an isometry it holds that the matrix of the first fundamental form of f
in (x,y) = (x,7) with respect to the basis (€1,62) = (d@(s,y)(€1),dP(z,y) (e2)) of Tﬁw’g (ﬁ = o(0))
coincides with (g;;(z,y)) and is therefore given by

(gij(x’g))(él,@) - <1 —:)zg 9?2> ’

On the other hand the matrix of the first fundamental form of f with respect to the standard basis is given

by (9i3(%:9)) (¢, ep) = (Jij (2, §)) and was computed in a).
The matrix of change of basis from (e1, e3) to (€1, €2) is given exactly by

1 0
M = d@(fb,y) = (a b)

for some a,b. Thus it must hold that

(@), . =M (Gn), M
which is equivalent to
l+a?(l+a2?) =1+ %,
ab(1+ 2?) =0,
b2(1 +2?) =

But the above system has no solutions for z € R>(. Contradiction arises.
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