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Solution 6

1. Parallel Surfaces

Given an immersion f : U → R3, U ⊂ R2, with Gauss map ν : U → S2 ⊂ R3 and ε > 0 we define fε : U → R3

as

fε(x1, x2) := f(x1, x2) + ε · ν(x1, x2).

Assuming that f has constant mean curvature H ̸= 0 and non-vanishing Gauss curvature K ̸= 0. Show that

when ε = 1
2H , fε is an immersion and the Gauss curvature of fε is constant.

Solution:

Fix x ∈ U and choose an orthonormal basis (v1, v2) of (TUx, gx) consisting of eigenvectors of Lx. Since

the Gauss curvature is invariant of reparametrization, we can assume without loss of generality that

(v1, v2) = (e1, e2) at x. Then gij = δij , hij = κiδij , H = 1
2 (κ1 + κ2) and K = κ1κ2, where all these

relations hold at x. Moreover νi = −
∑2

k=1 h
k
i · fk = −κi · fi and ν is a Gauss map for fε too.

It follows that, when evaluated in x ∈ U :

fε
i = fi + ε · νi = (1− εκi) · fi,

fε
ij = (1− εκi) · fij − εκi,j · fi,

gεij = ⟨fε
i , f

ε
j ⟩ = (1− εκi)(1− εκj)δij ,

hε
ij = ⟨fε

ij , ν⟩ = (1− εκi)⟨fij , ν⟩ − εκi,j⟨fi, ν⟩ = (1− εκi)κiδij .

When ε = 1
2H , suppose fε is not regular at x. Then 0 = (1− εκ1)(1− εκ2) = 1− 2Hε+ ε2K(x) = ε2K(x),

contradiction arises since K(x) ̸= 0. Finally we obtain

Kε(x) =
det(hε

ij(x))

det(gεij(x))
=

(1− εκ1)(1− εκ2)κ1κ2

(1− εκ1)2(1− εκ2)2
=

K(x)

1− ε2H + ε2K(x)
,

and for ε = 1
2H is Kε = 4H2 constant.

2. Asymptotic Curves

LetM ⊂ R3 be a surface withK < 0. A curve c : I → M is called an asymptotic curve ofM if hc(t)(ċ(t), ċ(t)) = 0

for all t ∈ I. Prove that:

a) One can find a local parametrization of M whose parameter lines are asymptotic curves (“parametrization

by asymptotic curves”).

b) M is a minimal surface if and only if the asymptotic curves of a) are orthogonal to each other in every

point.

Solution:

a) Let p ∈ M , f : U → M be a local parametrization with f(0) = p, gij(0) = δij and hij(0) = κi(0)δij

as in Q1. We want to find vector fields Xi : U
′ ⊂ U → R2 around 0 with hx(Xi(x), Xi(x)) = 0 and
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X1(x), X2(x) linearly independent for x ∈ U ′. For Xi := (ui, 1) it follows

h(Xi, Xi) = h11u
2
i + 2h12ui + h22,

so

h(Xi, Xi) = 0 ⇔ ui =
±
√
h2
12 − h11h22 − h12

h11
.

Since K(0) = h11(0)h22(0) < 0, it holds that h11 ̸= 0 and h2
12 − h11h22 > 0 in a neighborhood U ′ of 0 and

the vector fields X1 = (u1, 1), X2 = (u2, 1) with

u1 =

√
h2
12 − h11h22 − h12

h11
and u2 =

−
√
h2
12 − h11h22 − h12

h11

are well defined. Moreover u1 ̸= u2 and therefore X1, X2 are linearly independent on U ′. By Lemma A.5

there exists a diffeomorphism φ : Ũ → φ(Ũ) ⊂ U ′ with

∂φ

∂xi
= λi · (Xi ◦ φ)

in Ũ and 0 ∈ φ(Ũ), where λi : Ũ → R. The map f̃ : Ũ → R3, f̃ := f ◦ φ, is a parametrization with the

desired properties.

Indeed, let u0 ∈ R and consider the parameter curve γ : I → M , with

γ(v) := f̃(u0, v) = f̃ ◦ α(v),

provided that {u0} × I ⊂ Ũ , where α(v) := (u0, v). Then

γ̇(v) = (f ◦ φ ◦ α)′(v) = dfφ(α(v))(φ ◦ α)′(v)

= dfφ(u0,v)
∂φ

∂v
(u0, v) = λ2(u0, v) · dfφ(u0,v)

(
X2(φ(u0, v))

)
,

hence

hγ(v)

(
γ̇(v), γ̇(v)

)
= λ2(u0, v)

2 · hf(φ(u0,v))

(
dfφ(u0,v)(X2(φ(u0, v))), dfφ(u0,v)(X2(φ(u0, v)))

)
= λ2(u0, v)

2 · hφ(u0,v)

(
X2(φ(u0, v)), X2(φ(u0, v))

)
= 0.

Similarly, we have

hγ̃(u)( ˙̃γ(u), ˙̃γ(u)) = 0

if we consider γ̃(u) = f̃(u, v0) for (u, v0) ∈ Ũ .

b) We choose a parametrization by asymptotic curves f : U → R3, which exists by a). Then h11 =

h22 = 0 and h12 ̸= 0 (because K ̸= 0).

For the mean curvature it holds that

H = 1
2 trace(h

i
j) =

1
2 ·

2∑
i,j=1

gijhji =
1
2

(
g12h21 + g21h12

)
= g12h12
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and hence

H = 0 ⇔ g12 = 0 ⇔ g12 = 0 ⇔ ⟨f1, f2⟩ = 0,

which implies that M is a minimal surface if and only if the parameter lines are orthogonal.

3. Conjugate Minimal Surfaces

Let U ⊂ R2 be an open set. Two isothermally parametrized minimal surfaces f, f̃ : U → R3 are called conjugate

if f1 = f̃2 and f2 = −f̃1.

a) Find isothermal parametrizations of the helicoid and the catenoid and show that they are conjugate.

b) Show that if f and f̃ are conjugate then {f t : U → R3}t∈R with

f t(x) := cos t · f(x) + sin t · f̃(x)

is a family of isothermally parametrized minimal surfaces.

c) Show that the surfaces f t are locally isometric to each other and find a Gauss map for f t.

Solution:

a) The catenoid is given by

f̂(x, y) = (cosh y cosx, cosh y sinx, y).

We substitute x 7→ x+ π
2 and we obtain

f(x, y) = (cosh y sinx,− cosh y cosx, y).

Then

f1(x, y) = (cosh y cosx, cosh y sinx, 0),

f2(x, y) = (sinh y sinx, − sinh y cosx, 1).

For the helicoid

f̃(x, y) = (sinh y cosx, sinh y sinx, x)

we obtain

f̃1(x, y) = (− sinh y sinx, sinh y cosx, 1),

f̃2(x, y) = (cosh y cosx, cosh y sinx, 0).

Therefore

(gij) =
(
⟨fi, fj⟩

)
=

(
cosh2 y 0

0 sinh2 y + 1

)
= cosh2 y

(
1 0

0 1

)
,

(g̃ij) =
(
⟨f̃i, f̃j⟩

)
=

(
sinh2 y + 1 0

0 cosh2 y

)
= cosh2 y

(
1 0

0 1

)
.
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Define λ(x, y) := cosh y, then it holds gij = g̃ij = λ2 δij , f1 = f̃2 and f2 = −f̃1, from which we conclude

that f and f̃ are isothermal and conjugate.

Notice that by Proposition 5.7 two conjugate isothermally parametrized surfaces are minimal. Indeed

f11 + f22 = f̃21 − f̃12 = 0 and similarly f̃11 + f̃22 = 0.

b) We first show that f t is an isothermal parametrization. Note that ⟨f1, f1⟩ = ⟨f̃2, f̃2⟩, so we have

⟨fi, fj⟩ = ⟨f̃i, f̃j⟩ = λ2δij for some λ : U → R. Notice that

⟨f1, f̃1⟩+ ⟨f1, f̃1⟩ = −2 · ⟨f1, f2⟩ = 0,

⟨f2, f̃2⟩+ ⟨f2, f̃2⟩ = 2 · ⟨f1, f2⟩ = 0,

⟨f1, f̃2⟩+ ⟨f2, f̃1⟩ = ⟨f1, f1⟩ − ⟨f2, f2⟩ = λ− λ = 0,

hence ⟨fi, f̃j⟩+ ⟨fj , f̃i⟩ = 0. It follows that

gtij =
〈
f t
i , f

t
j

〉
= cos2 t · ⟨fi, fj⟩+ cos t sin t ·

(
⟨fi, f̃j⟩+ ⟨fj , f̃i⟩

)
+ sin2 t · ⟨f̃i, f̃j⟩

= λ2(cos2 t+ sin2 t) δij = λ2 δij ,

so we conclude f t is isothermal. Moreover

∆f t = cos t (f11 + f22) + sin t (f̃11 + f̃22)

= cos t (f̃21 − f̃12) + sin t (−f21 + f12) = 0

and hence f t is minimal by Proposition 5.7.

c) As computed in b), we have for all t ∈ R

gtij = λ2 δij ,

which is invariant of t, therefore the identity id : U → U is an isometry between f t for distinct t.

In order to find a Gauss map for f t we compute

f t
1 × f t

2 = cos2 t (f1 × f2) + cos t sin t (f1 × f̃2 + f̃1 × f2) + sin2 t (f̃1 × f̃2)

= cos2 t (f1 × f2) + cos t sin t (f1 × f1 − f2 × f2) + sin2 t (−f2 × f1)

= f1 × f2 (= f̃1 × f̃2),

and therefore it holds that

νt = ν = ν̃ =
f1 × f2
|f1 × f2|

for all t ∈ R.
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