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Solution 7

1. Characterization of the Sphere

Prove the following lemma due to H. Hopf:

Lemma. Let m ≥ 1, M be a compact, connected, m-dimensional submanifold of Rm+1. Suppose that for each

vector v ∈ Sm there exists λ = λ(v) ∈ R such that M is symmetric with respect to reflections on the hyperplane

Ev,λ := {x ∈ Rm+1 : ⟨x, v⟩ = λ}, then M is a sphere.

Hint: Show first that upon translation one can arrange that M is symmetric with respect to all coordinate

hyperplanes and, hence, centrally symmetric with respect to the origin.

Solution:

First of all, notice that for v ∈ Sm and x ∈ Rm+1, ⟨x, v⟩ = λ(v) if and only if ⟨x − λ(v)v, v⟩ = 0, hence

Ev,λ(v) = Tλ(v)v(Ev,0) and in fact Ev,λ = Tλv(Ev,0) for all λ ∈ R, where Tλv : x 7→ x + λv. Moreover the

reflection on the hyperplane Ev,0 is given by Rv,0 : z 7→ z−2⟨z, v⟩v. Hence the reflection on the hyperplane

Ev,λ(v) is given by

Rv,λ(v) = Tλ(v)v ◦Rv,0 ◦ T−λ(v)v, z 7→ z − 2⟨v, z − λ(v)v⟩v.

Up to translating M , we might assume that M is symmetric with respect to the reflections on the

hyperplanes Ei := Eei,0 (which is given by changing the sign of the i-th coordinate)1. By applying

successively the reflections on the hyperplanes E1, . . . , Em+1 we obtain that M is preserved by the map

x 7→ −x.

This implies that λ(v) = 0 for all v ∈ Sm. Indeed, first notice that if M is symmetric with respect

to Ev,λ, then M is symmetric with respect to E−v,λ. This follows because M is preserved by the map

x 7→ −x and also R−v,λ(z) = −Rv,λ(−z). If λ(v) ̸= 0 we can use subsequent reflections on the parallel

hyperplanes Ev,λ(v) ̸= E−v,λ(v) to produce an unbounded sequence of points in M . This is not possible by

compactness, hence λ(v) = 0.

Now let p ∈ M \ {0}. For every point q ∈ S|p|(0), the sphere with radius |p| around 0, there exists

a reflection Rv,0 on the hyperplane Ev,0 (explicitly v := q−p
|q−p| ) sending p to q, so q ∈ M . Hence S|p|(0)

is contained in M . If M contains any other point p′ with |p′| ≠ |p|, then the same argument shows that

M contains also the sphere of radius |p′| and by connectedness also the region between the two spheres,

contradicting the m-dimensionality of M .

Alternative Solution. By the separation theorem, we denote by A the bounded connected component

in Rm+1 \M with ∂A = M . Let

p0 :=

´
A
x dLm+1(x)

Vol(A)

be the center of mass of A, where Lm+1 is the Lebesgue measure on Rm+1. By translation we can assume

without loss of generality that p0 = 0. Let v ∈ Sm, λ ∈ R, and let Rv,λ denote the reflection with respect

to Ev,λ. Assume M is symmetric with respect to Rv,λ, then Rv,λ(A) is the bounded connected component

of Rm+1 \ Rv,λ(M) = Rm+1 \ M since Rv,λ : Rm+1 → Rm+1 is a diffeomorphism, hence Rv,λ(A) = A.

Moreover, since Rv,λ is a bijective affine map, Rv,λ(p0) equals to the center of mass of Rv,λ(A) = A, hence

p0 = Rv,λ(p0). It follows that 0 = p0 ∈ Ev,λ and hence λ = 0. By the assumptions in the problem, then

we have M is symmetric with respect to Ev,0 for any v ∈ Sm. The remaining argument is the same as

Fall 2024 1



Differential Geometry I
D-MATH

Prof. Dr. Urs Lang

above.

1Denote by T1 : Rm+1 → Rm+1 the translation by −λ(e1)·e1 and show that T1(M) is symmetric with respect to reflections

on the hyperplane Ee1,0. Notice that T1(M) is still symmetric with respect to the hyperplanes Eei,λ(ei)
for i = 2, . . . ,m+1.

Repeat for T2, . . . , Tm+1.

2. Non-positively Curved Surfaces

Let M ⊂ R3 be a surface with Gauss curvature K ≤ 0. Prove the following assertions (we assume a < b).

a) There is no simple geodesic loop (in particular no simple C∞-closed geodesic) c : [a, b] → M whose trace

bounds a topological disk in M .

b) There is no pair of injective geodesics c1, c2 : [a, b] → M such that c1(a) = c2(a) and c1(b) = c2(b) are the

only common points and the union of the traces bounds a topological disk.

c) If M is homeomorphic to a cylinder and K < 0, then there is no pair of simple C∞-closed geodesics

c1, c2 : [a, b] → M with different traces.

Solution:

a) Suppose that there is a simple geodesic loop c bounding a simply connected region D homeomorphic

to a disc. Denote by α the external angle in c(a) = c(b). By the Gauss-Bonnet theorem (Theorem 6.3) we

have ˆ
D

K dA+ α = 2π,

which is not possible as K ≤ 0 and α ∈ (−π, π).

b) Suppose that the geodesics c1 and c2 enclose a compact simply connected region D homeomorphic

to a disc. Denote by α1, α2 the external angles between them at c1(a) and c1(b) respectively. Since c1 and

c2 are geodesics, it holds κg = 0. Hence by the Gauss-Bonnet theorem (Theorem 6.3) we have

ˆ
D

K dA+ α1 + α2 = 2π.

Since K ≤ 0 it follows that α1 + α2 ≥ 2π. Moreover, since α1, α2 ∈ [−π, π] it must hold α1 = α2 = π.

Therefore ċ1(a) = ċ2(a) and thus by uniqueness of geodesics c1 = c2, a contradiction.

c) Suppose that there are two simple C∞-closed geodesics c1 and c2 with different traces. From a)

it follows that neither c1 nor c2 can enclose a disc, hence M \ c1([a, b]) has two connected components

homeomorphic to cylinders2. Also, c1 and c2 cannot intersect. Otherwise assume they intersect at p,

then by uniqueness of geodesics c2 cannot be tangent to c1 at p, hence c2 intersects with both connected

components of M \ c1([a, b]), and must have another intersection point q ̸= p with c1. Then (by Schoenflies

theorem) c1 and c2 enclose a topological disk, contradiction arises. Therefore they must be disjoint and

enclose an annulus.

We parametrize c1, c2 such that their orientation coincides with the one of the domain that they enclose.

Choose two points p on c1 and q on c2 and a simple regular smooth curve c connecting p to q, which doesn’t

intersect c1 and c2 at any other point. Then the concatenation c1 ∪ c ∪ c2 ∪−c encloses a compact simply

connected region D homeomorphic to a disc, where −c is along the reverse direction of c3. It holds

ˆ
c1 ∪ c ∪ c2 ∪ −c

κg =

ˆ
c1

κg +

ˆ
c

κg +

ˆ
c2

κg +

ˆ
−c

κg =

ˆ
c

κg −
ˆ
c

κg = 0.
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Since the external angles sum to 2π, the Gauss-Bonnet theorem gives

0 >

ˆ
D

K dA = 2π −
4∑

i=1

αi = 0,

which gives the desired contradiction.

c1c2

p

D

q
c

Alternative Solution. Suppose the simple C∞-closed geodesics c1 and c2 don’t intersect, then they

enclose a compact annulus R as pointed above with χ(R) = 0. By the generalized Gauss-Bonnet theorem

as mentioned in the lecture, we have

0 = 2πχ(R) =

ˆ
R

K dA+

ˆ
∂R

κg ds =

ˆ
R

K dA < 0,

contradiction arises.

2Rigorously, c1 can be identified as a simple closed continuous curve in R2, where 0 ∈ R2 corresponds to the bottom and

∞ in R2 corresponds to the top of the cylinder. Then we can apply Schoenflies theorem.
3In rigorous argument, it’s replaced by a simple regular smooth curve γ from q′ ∈ c2([a, b]) to p′ ∈ c1([a, b]), which doesn’t

intersect c1 and c2 at any other point and is disjoint from c. We can choose γ to be as close to −c as possible.

3. Gauss Map of the Torus

a) Let f : U → Rm+1, U ⊂ Rm open, be an immersion with Gauss map ν : U → Sm ⊂ Rm+1. Assuming that

ν is an immersion, prove that

A(ν) =

ˆ
U

|K|
√
det(gij) dx.

b) Let T ⊂ R3 be a torus. Describe the image of the Gauss map and prove that

ˆ
T

K dA = 0,

without using the theorem of Gauss-Bonnet.

Solution:

a) From Weingarten’s equation (Lemma 4.8 (2)) it follows that

νi = −
m∑

k=1

hk
ifk,
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and hence

⟨νi, νj⟩ =

〈
−

m∑
k=1

hk
ifk,−

m∑
l=1

hl
jfl

〉

=

m∑
k=1

m∑
l=1

hk
ih

l
j⟨fk, fl⟩

=

m∑
k=1

m∑
l=1

hk
ih

l
jgkl

=

m∑
k=1

m∑
l=1

hk
igklh

l
j .

So we get

det
(
⟨νi, νj⟩

)
= det

((
hk

i

)
ik
◦
(
gkl
)
kl
◦
(
hl

j

)
lj

)
= det(hk

i) · det(hl
j) · det(gkl)

= K2 · det(gkl)

and therefore

A(ν) =

ˆ
U

√
det⟨νi, νj⟩ dx =

ˆ
U

|K|
√
det(gij) dx.

b) The image of the Gauss map covers the whole sphere S2. The circles (r cos y, r sin y,±a) are mapped

by the Gauss map ν to the South and North poles, respectively.

For q ∈ S2 distinct from the South and North poles, there are exactly two points p+ and p− in T such

that ν(p+) = ν(p−) = q, one lying in the outer region T+ with K > 0 and one lying in the inner region T−

with K < 0 (see also later). Therefore

ˆ
T

K dA =

ˆ
T+

K dA+

ˆ
T−

K dA = A(ν+)−A(ν−) = A(S2)−A(S2) = 0.

Alternative Solution. The parametrization of the torus is given by f : [0, 2π]2 → R3 with

f(x, y) = ((r + a cosx) cos y, (r + a cosx) sin y, a sinx) ,

where r > a > 0. It holds

f1(x, y) = (−a sinx cos y,−a sinx sin y, a cosx) ,

f2(x, y) = (−(r + a cosx) sin y, (r + a cosx) cos y, 0) ,

f11(x, y) = (−a cosx cos y,−a cosx sin y,−a sinx) ,

f12(x, y) = (a sinx sin y,−a sinx cos y, 0) ,

f22(x, y) = (−(r + a cosx) cos y,−(r + a cosx) sin y, 0)

and

ν(x, y) =
f1 × f2
|f1 × f2|

= (− cosx cos y,− cosx sin y,− sinx).
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From the above computations we obtain

(gij) =

(
a2 0

0 (r + a cosx)2

)
,

(hij) =

(
a 0

0 (r + a cosx) cosx

)
.

For the Gauss curvature it holds

K =
det (hij)

det (gij)
=

a(r + a cosx) cosx

a2(r + a cosx)2
=

cosx

a(r + a cosx)
,

and therefore

ˆ
T

K dA =

ˆ 2π

0

ˆ 2π

0

cosx

a(r + a cosx)

√
det (gij) dx dy = 2π

ˆ 2π

0

cosx dx = 0.
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