Solution 7

1. Characterization of the Sphere

Prove the following lemma due to H. Hopf:

Lemma. Let $m \geq 1$, M be a compact, connected, m-dimensional submanifold of \mathbb{R}^{m+1} . Suppose that for each vector $v \in S^m$ there exists $\lambda = \lambda(v) \in \mathbb{R}$ such that M is symmetric with respect to reflections on the hyperplane $E_{v,\lambda} := \{x \in \mathbb{R}^{m+1} : \langle x, v \rangle = \lambda\}$, then M is a sphere.

Hint: Show first that upon translation one can arrange that M is symmetric with respect to all coordinate hyperplanes and, hence, centrally symmetric with respect to the origin.

Solution:

First of all, notice that for $v \in S^m$ and $x \in \mathbb{R}^{m+1}$, $\langle x, v \rangle = \lambda(v)$ if and only if $\langle x - \lambda(v)v, v \rangle = 0$, hence $E_{v,\lambda(v)} = T_{\lambda(v)v}(E_{v,0})$ and in fact $E_{v,\lambda} = T_{\lambda v}(E_{v,0})$ for all $\lambda \in \mathbb{R}$, where $T_{\lambda v} : x \mapsto x + \lambda v$. Moreover the reflection on the hyperplane $E_{v,0}$ is given by $R_{v,0} : z \mapsto z - 2\langle z, v \rangle v$. Hence the reflection on the hyperplane $E_{v,\lambda(v)}$ is given by

$$R_{v,\lambda(v)} = T_{\lambda(v)v} \circ R_{v,0} \circ T_{-\lambda(v)v}, \quad z \mapsto z - 2\langle v, z - \lambda(v)v \rangle v.$$

Up to translating M, we might assume that M is symmetric with respect to the reflections on the hyperplanes $E_i := E_{e_i,0}$ (which is given by changing the sign of the i-th coordinate)¹. By applying successively the reflections on the hyperplanes E_1, \ldots, E_{m+1} we obtain that M is preserved by the map $x \mapsto -x$.

This implies that $\lambda(v) = 0$ for all $v \in S^m$. Indeed, first notice that if M is symmetric with respect to $E_{v,\lambda}$, then M is symmetric with respect to $E_{-v,\lambda}$. This follows because M is preserved by the map $x \mapsto -x$ and also $R_{-v,\lambda}(z) = -R_{v,\lambda}(-z)$. If $\lambda(v) \neq 0$ we can use subsequent reflections on the parallel hyperplanes $E_{v,\lambda(v)} \neq E_{-v,\lambda(v)}$ to produce an unbounded sequence of points in M. This is not possible by compactness, hence $\lambda(v) = 0$.

Now let $p \in M \setminus \{0\}$. For every point $q \in S_{|p|}(0)$, the sphere with radius |p| around 0, there exists a reflection $R_{v,0}$ on the hyperplane $E_{v,0}$ (explicitly $v := \frac{q-p}{|q-p|}$) sending p to q, so $q \in M$. Hence $S_{|p|}(0)$ is contained in M. If M contains any other point p' with $|p'| \neq |p|$, then the same argument shows that M contains also the sphere of radius |p'| and by connectedness also the region between the two spheres, contradicting the m-dimensionality of M.

Alternative Solution. By the separation theorem, we denote by A the bounded connected component in $\mathbb{R}^{m+1} \setminus M$ with $\partial A = M$. Let

$$p_0 := \frac{\int_A x \, d\mathcal{L}^{m+1}(x)}{\operatorname{Vol}(A)}$$

be the center of mass of A, where \mathcal{L}^{m+1} is the Lebesgue measure on \mathbb{R}^{m+1} . By translation we can assume without loss of generality that $p_0 = 0$. Let $v \in S^m$, $\lambda \in \mathbb{R}$, and let $R_{v,\lambda}$ denote the reflection with respect to $E_{v,\lambda}$. Assume M is symmetric with respect to $R_{v,\lambda}$, then $R_{v,\lambda}(A)$ is the bounded connected component of $\mathbb{R}^{m+1} \setminus R_{v,\lambda}(M) = \mathbb{R}^{m+1} \setminus M$ since $R_{v,\lambda} : \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$ is a diffeomorphism, hence $R_{v,\lambda}(A) = A$. Moreover, since $R_{v,\lambda}$ is a bijective affine map, $R_{v,\lambda}(p_0)$ equals to the center of mass of $R_{v,\lambda}(A) = A$, hence $p_0 = R_{v,\lambda}(p_0)$. It follows that $0 = p_0 \in E_{v,\lambda}$ and hence $\lambda = 0$. By the assumptions in the problem, then we have M is symmetric with respect to $E_{v,0}$ for any $v \in S^m$. The remaining argument is the same as

above.

¹Denote by $T_1: \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$ the translation by $-\lambda(e_1) \cdot e_1$ and show that $T_1(M)$ is symmetric with respect to reflections on the hyperplane $E_{e_1,0}$. Notice that $T_1(M)$ is still symmetric with respect to the hyperplanes $E_{e_i,\lambda(e_i)}$ for $i=2,\ldots,m+1$. Repeat for T_2,\ldots,T_{m+1} .

2. Non-positively Curved Surfaces

Let $M \subset \mathbb{R}^3$ be a surface with Gauss curvature $K \leq 0$. Prove the following assertions (we assume a < b).

- a) There is no simple geodesic loop (in particular no simple C^{∞} -closed geodesic) $c : [a, b] \to M$ whose trace bounds a topological disk in M.
- b) There is no pair of injective geodesics $c_1, c_2 : [a, b] \to M$ such that $c_1(a) = c_2(a)$ and $c_1(b) = c_2(b)$ are the only common points and the union of the traces bounds a topological disk.
- c) If M is homeomorphic to a cylinder and K < 0, then there is no pair of simple C^{∞} -closed geodesics $c_1, c_2 \colon [a, b] \to M$ with different traces.

Solution:

a) Suppose that there is a simple geodesic loop c bounding a simply connected region D homeomorphic to a disc. Denote by α the external angle in c(a) = c(b). By the Gauss-Bonnet theorem (Theorem 6.3) we have

$$\int_D K \, dA + \alpha = 2\pi,$$

which is not possible as $K \leq 0$ and $\alpha \in (-\pi, \pi)$.

b) Suppose that the geodesics c_1 and c_2 enclose a compact simply connected region D homeomorphic to a disc. Denote by α_1 , α_2 the external angles between them at $c_1(a)$ and $c_1(b)$ respectively. Since c_1 and c_2 are geodesics, it holds $\kappa_g = 0$. Hence by the Gauss-Bonnet theorem (Theorem 6.3) we have

$$\int_D K \, dA + \alpha_1 + \alpha_2 = 2\pi.$$

Since $K \leq 0$ it follows that $\alpha_1 + \alpha_2 \geq 2\pi$. Moreover, since $\alpha_1, \alpha_2 \in [-\pi, \pi]$ it must hold $\alpha_1 = \alpha_2 = \pi$. Therefore $\dot{c}_1(a) = \dot{c}_2(a)$ and thus by uniqueness of geodesics $c_1 = c_2$, a contradiction.

c) Suppose that there are two simple C^{∞} -closed geodesics c_1 and c_2 with different traces. From a) it follows that neither c_1 nor c_2 can enclose a disc, hence $M \setminus c_1([a,b])$ has two connected components homeomorphic to cylinders². Also, c_1 and c_2 cannot intersect. Otherwise assume they intersect at p, then by uniqueness of geodesics c_2 cannot be tangent to c_1 at p, hence c_2 intersects with both connected components of $M \setminus c_1([a,b])$, and must have another intersection point $q \neq p$ with c_1 . Then (by Schoenflies theorem) c_1 and c_2 enclose a topological disk, contradiction arises. Therefore they must be disjoint and enclose an annulus.

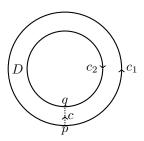
We parametrize c_1 , c_2 such that their orientation coincides with the one of the domain that they enclose. Choose two points p on c_1 and q on c_2 and a simple regular smooth curve c connecting p to q, which doesn't intersect c_1 and c_2 at any other point. Then the concatenation $c_1 \cup c \cup c_2 \cup -c$ encloses a compact simply connected region D homeomorphic to a disc, where -c is along the reverse direction of c^3 . It holds

$$\int_{c_1\,\cup\,c\,\cup\,c_2\,\cup\,-c}\kappa_g=\int_{c_1}\kappa_g+\int_c\kappa_g+\int_{c_2}\kappa_g+\int_{-c}\kappa_g=\int_c\kappa_g-\int_c\kappa_g=0.$$

Since the external angles sum to 2π , the Gauss-Bonnet theorem gives

$$0 > \int_D K \, dA = 2\pi - \sum_{i=1}^4 \alpha_i = 0,$$

which gives the desired contradiction.



Alternative Solution. Suppose the simple C^{∞} -closed geodesics c_1 and c_2 don't intersect, then they enclose a compact annulus R as pointed above with $\chi(R) = 0$. By the generalized Gauss-Bonnet theorem as mentioned in the lecture, we have

$$0 = 2\pi \chi(R) = \int_{R} K \, dA + \int_{\partial R} \kappa_g \, ds = \int_{R} K \, dA < 0,$$

contradiction arises.

²Rigorously, c_1 can be identified as a simple closed continuous curve in \mathbb{R}^2 , where $0 \in \mathbb{R}^2$ corresponds to the bottom and ∞ in \mathbb{R}^2 corresponds to the top of the cylinder. Then we can apply Schoenflies theorem.

³In rigorous argument, it's replaced by a simple regular smooth curve γ from $q' \in c_2([a, b])$ to $p' \in c_1([a, b])$, which doesn't intersect c_1 and c_2 at any other point and is disjoint from c. We can choose γ to be as close to -c as possible.

3. Gauss Map of the Torus

a) Let $f: U \to \mathbb{R}^{m+1}$, $U \subset \mathbb{R}^m$ open, be an immersion with Gauss map $\nu: U \to S^m \subset \mathbb{R}^{m+1}$. Assuming that ν is an immersion, prove that

$$A(\nu) = \int_{U} |K| \sqrt{\det(g_{ij})} \, dx.$$

b) Let $T \subset \mathbb{R}^3$ be a torus. Describe the image of the Gauss map and prove that

$$\int_T K \, dA = 0,$$

without using the theorem of Gauss-Bonnet.

Solution:

a) From Weingarten's equation (Lemma 4.8 (2)) it follows that

$$\nu_i = -\sum_{k=1}^m h^k_{\ i} f_k,$$

and hence

$$\langle \nu_i, \nu_j \rangle = \left\langle -\sum_{k=1}^m h^k_{ij} f_k, -\sum_{l=1}^m h^l_{jl} f_l \right\rangle$$

$$= \sum_{k=1}^m \sum_{l=1}^m h^k_{il} h^l_{jl} \langle f_k, f_l \rangle$$

$$= \sum_{k=1}^m \sum_{l=1}^m h^k_{il} h^l_{jl} g_{kl}$$

$$= \sum_{k=1}^m \sum_{l=1}^m h^k_{il} g_{kl} h^l_{jl}.$$

So we get

$$\det (\langle \nu_i, \nu_j \rangle) = \det ((h^k_{i})_{ik} \circ (g_{kl})_{kl} \circ (h^l_{j})_{lj})$$

$$= \det (h^k_{i}) \cdot \det (h^l_{j}) \cdot \det (g_{kl})$$

$$= K^2 \cdot \det (g_{kl})$$

and therefore

$$A(\nu) = \int_{U} \sqrt{\det \langle \nu_{i}, \nu_{j} \rangle} \, dx = \int_{U} |K| \sqrt{\det(g_{ij})} \, dx.$$

b) The image of the Gauss map covers the whole sphere S^2 . The circles $(r \cos y, r \sin y, \pm a)$ are mapped by the Gauss map ν to the South and North poles, respectively.

For $q \in S^2$ distinct from the South and North poles, there are exactly two points p_+ and p_- in T such that $\nu(p_+) = \nu(p_-) = q$, one lying in the outer region T_+ with K > 0 and one lying in the inner region T_- with K < 0 (see also later). Therefore

$$\int_T K dA = \int_T K dA + \int_T K dA = A(\nu_+) - A(\nu_-) = A(S^2) - A(S^2) = 0.$$

Alternative Solution. The parametrization of the torus is given by $f:[0,2\pi]^2\to\mathbb{R}^3$ with

$$f(x,y) = ((r + a\cos x)\cos y, (r + a\cos x)\sin y, a\sin x),$$

where r > a > 0. It holds

$$f_1(x,y) = (-a\sin x\cos y, -a\sin x\sin y, a\cos x),$$

$$f_2(x,y) = (-(r+a\cos x)\sin y, (r+a\cos x)\cos y, 0),$$

$$f_{11}(x,y) = (-a\cos x\cos y, -a\cos x\sin y, -a\sin x),$$

$$f_{12}(x,y) = (a\sin x\sin y, -a\sin x\cos y, 0),$$

$$f_{22}(x,y) = (-(r+a\cos x)\cos y, -(r+a\cos x)\sin y, 0)$$

and

$$\nu(x,y) = \frac{f_1 \times f_2}{|f_1 \times f_2|} = (-\cos x \cos y, -\cos x \sin y, -\sin x).$$

Prof. Dr. Urs Lang

From the above computations we obtain

$$(g_{ij}) = \begin{pmatrix} a^2 & 0 \\ 0 & (r + a\cos x)^2 \end{pmatrix},$$
$$(h_{ij}) = \begin{pmatrix} a & 0 \\ 0 & (r + a\cos x)\cos x \end{pmatrix}.$$

For the Gauss curvature it holds

$$K = \frac{\det(h_{ij})}{\det(g_{ij})} = \frac{a(r + a\cos x)\cos x}{a^2(r + a\cos x)^2} = \frac{\cos x}{a(r + a\cos x)},$$

and therefore

$$\int_{T} K dA = \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\cos x}{a(r + a\cos x)} \sqrt{\det(g_{ij})} dx dy = 2\pi \int_{0}^{2\pi} \cos x dx = 0.$$