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Solution 8

1. The Brouwer Fixed Point Theorem

Brouwer’s theorem states that every continuous self-map f : D → D of the unit ball D := {x ∈ Rn : |x| ≤ 1}
has a fixed point.

a) Let M ⊂ R3 be a surface and D̃ ⊂ M a region diffeomorphic to the disc D := {x ∈ R2 : |x| ≤ 1}. Consider
a continuous tangent vector field X : D̃ → R3 which on ∂D̃ is pointing outward. Show that X has zeros

in the interior of D̃.

b) Prove the Brouwer fixed point theorem in two dimensions using part a).

Solution:

a) It suffices to prove the statement for X : D → R2.

We want to use the Poincaré index theorem, but for that we must have a compact surface without

boundary.

First we can modify X such that on ∂D it points radially towards the exterior1. Then we consider

Y : D → R2, Y := −X, which is a vector field on D pointing radially towards the interior at every point

of ∂D.

Now identify D with a hemisphere of S2, then we can glue two hemispheres together along their

boundaries to obtain S2. By considering the vector field X on one hemisphere and Y on the other we

obtain a continuous vector field Z : S2 → R3, which is nowhere vanishing on the equator. As seen in class,

the Poincaré index theorem implies that Z must have a zero, but since there are none on the equator we

conclude that X or −X (and hence X) must have at least one zero in the interior of D.

b) Let f : D → D be a continuous map. We define the vector field X : D → R2 by X(x) := x − f(x).

For x ∈ ∂D it holds

⟨X(x), x⟩ = ⟨x, x⟩ − ⟨f(x), x⟩ ≥ 1− |x| |f(x)| ≥ 0,

where the equality holds if and only if f(x) = x. This shows that if X doesn’t vanish on ∂D, then it points

outward at every point of ∂D. In this case it follows from a) that it has a zero in the interior of D. In

both cases there is x0 ∈ D with X(x0) = 0, that is f(x0) = x0.

1To be specific, assume X points outward on ∂D and doesn’t have zeros in D◦, then by uniform continuity there exists

r ∈ (0, 1) such that ⟨X(x), x⟩ > 0 on D \ D◦
r , where Dr is the disk centered at 0 of radius r. We define X̃ = X on Dr and

X̃(x) :=
1−|x|
1−r

X(x) + (|x| − r)x if |x| ∈ [r, 1]. Then X̃ points radially towards the exterior on ∂D and is nowhere vanishing

on D (note ⟨X̃(x), x⟩ > 0 if r ≤ |x| ≤ 1), and we can obtain a contradiction as in the solution.

2. Hyperbolic Trigonometry

Consider a geodesic triangle with angles α, β, γ at the vertices A,B,C and sides of lengths a, b, c opposite to

A,B,C, respectively, in the hyperbolic plane (H2, g) ⊂ R2,1. Prove the following trigonometric identities of

hyperbolic geometry:

a) sinh c sinβ = sinh b sin γ (law of sines),

b) cosh c = cosh a cosh b− sinh a sinh b cos γ (law of cosines),

c) cos γ = sinα sinβ cosh c− cosα cosβ (law of cosines for angles).
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Hint: Choose B in e3 and C in the plane spanned by e1 and e3, then compute the coordinates of A in two

different ways.

Solution:

We denote by σPQ the unit-speed geodesic from P to Q and by vPQ := σ′
PQ(0) ∈ TH2

P the vector in

direction of Q. We know that

σPQ(s) = cosh(s)P + sinh(s) vPQ.

We assume that B = e3, vBC = e1, and g(vBA, e2) ≥ 0. Then

A = cosh c ·B + sinh c · vBA

= cosh c · e3 + sinh c · (cosβ · e1 + sinβ · e2).

On the other hand,

A = cosh b · C + sinh b · vCA

= cosh b · (cosh a · e3 + sinh a · e1) + sinh b · vCA.

To determine vCA, notice that vCA ∈ TH2
C = span{vCB , e2} and

vCB = −σ′
BC(a) = −(sinh a · e3 + cosh a · e1).

Since (vCB , e2) is an orthonormal basis of TH2
C , and since g(vCB , vCA) = cos γ and g(e2, vCA) ≥ 0, it

follows that

vCA = cos γ · vCB + sin γ · e2
= − cos γ · (sinh a · e3 + cosh a · e1) + sin γ · e2.

We conclude that

A =

 sinh c cosβ

sinh c sinβ

cosh c

 =

 sinh a cosh b− cosh a sinh b cos γ

sinh b sin γ

cosh a cosh b− sinh a sinh b cos γ

 .

This yields a) and b) as well as a third identity. Using the latter and the law of sines, with permuted

entries, we get

sinh a (sinα sinβ cosh c− cosα cosβ)

= (sinh a sinβ) sinα cosh c− (sinh a cosβ) cosα

= (sinh b sinα) sinα cosh c− (sinh c cosh b− cosh c sinh b cosα) cosα

= sinh b cosh c− cosh b sinh c cosα

= sinh a cos γ.

This gives c). Note that this shows explicitly that in hyperbolic geometry (unlike in Euclidean geometry),

the three angles of a geodesic triangle determine its side lengths.
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3. Circles in H2

Consider a circle S ⊂ H2 of radius r > 0 in the hyperbolic plane. Determine the length L of S, the (constant)

geodesic curvature κ of S (with respect to the inward normal), and the area A of the disk D ⊂ H2 bounded

by S. (Hint: save work by making use of a relation between these three quantities.) What is the behavior of

κ = κ(r) when r → ∞?

Solution:

First, recall that by the homogeneity of the hyperbolic plane (Theorem 7.2), L,A, κ do not depend on

the position of the center of the circle (needless to say that all quantities are measured with respect to

the hyperbolic metric, independent of a specific model – otherwise the problem would not be well-posed).

Suppose that p = (0, 0, 1) ∈ H2 ⊂ R2,1 is the center of S. For any unit vector v ∈ TH2
p , the geodesic c

with c(0) = p and c′(0) = v is given by c(s) = cosh(s)p + sinh(s)v. Hence, S is the circle of Euclidean

radius sinh(r) in the horizontal plane P = R2 × {cosh(r)} ⊂ R2,1. Since ⟨w,w⟩L = |w|2 (Euclidean norm)

for all vectors w tangent to P , it follows that L = 2π sinh(r). The area is

A =

ˆ r

0

2π sinh(s) ds = 2π(cosh(r)− 1).

By the Gauss–Bonnet theorem, −A + κL = 2π, thus κ = κ(r) = coth(r), and κ(r) → 1 for r → ∞. [By

contrast, in R2, κ(r) = 1
r → 0.]

Alternative 1. For S as above and ρ := sinh(r), a unit speed parametrization of S is given by

t 7→ σ(t) := (cos(ρ−1t)ρ, sin(ρ−1t)ρ, cosh(r)).

Then σ′′(0) = (−ρ−1, 0, 0), and the inward unit normal of S at σ(0) is the vector −c′(r) = −(cosh(r), 0, ρ),

where s 7→ c(s) = (sinh(s), 0, cosh(s)) is the radial geodesic through σ(0). Hence,

κ = ⟨σ′′(0),−c′(r)⟩L = ρ−1 cosh(r) = coth(r).

Alternative 2. Let S be the circle with center p = 0 and (hyperbolic) radius r in the Poincaré (disk) model

(U, g) of H2, where gx = 4(1− |x|2)−2⟨· , ·⟩. If a ∈ (0, 1) is the Euclidean radius of S, then

r =

ˆ a

0

2

1− t2
dt =

ˆ a

0

1

1 + t
+

1

1− t
dt = log

(
1 + a

1− a

)
,

thus a = (er − 1)/(er + 1) [= tanh(r/2)] and

L = 2πa · 2

1− a2
= . . . = 2π sinh(r).

Warning. Here, the upper halfspace model (U+, g+) is a bad choice. This model is conformal, thus

hyperbolic circles are still represented by Euclidean circles; however, the respective centers do not coincide.

Recall that s 7→ (0, es) is a unit speed geodesic. Hence, the hyperbolic circle with center p = (0, 1) and

radius r > 0 passes through the points (0, e−r) and (0, er), whose Euclidean midpoint is (0, cosh(r)).
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