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Solution 8

1. The Brouwer Fixed Point Theorem

Brouwer’s theorem states that every continuous self-map f: D — D of the unit ball D = {z € R" : |z| < 1}
has a fixed point.

a) Let M C R? be a surface and D C M a region diffeomorphic to the disc D == {z € R? : |z| < 1}. Consider
a continuous tangent vector field X : D — R3 which on 8D is pointing outward. Show that X has zeros

in the interior of D.

b) Prove the Brouwer fixed point theorem in two dimensions using part a).

Solution:

a) It suffices to prove the statement for X : D — R2.

We want to use the Poincaré index theorem, but for that we must have a compact surface without
boundary.

First we can modify X such that on 0D it points radially towards the exterimﬂ Then we consider
Y: D — R?, Y := —X, which is a vector field on D pointing radially towards the interior at every point
of OD.

Now identify D with a hemisphere of S?, then we can glue two hemispheres together along their
boundaries to obtain S2. By considering the vector field X on one hemisphere and Y on the other we
obtain a continuous vector field Z: §? — R3, which is nowhere vanishing on the equator. As seen in class,
the Poincaré index theorem implies that Z must have a zero, but since there are none on the equator we
conclude that X or —X (and hence X) must have at least one zero in the interior of D.

b) Let f: D — D be a continuous map. We define the vector field X: D — R? by X(z) :== x — f(x).
For = € 0D it holds

(X(2),2) = (2.2) = (f(2),) > 1 — [a] | f(z)| = 0,
where the equality holds if and only if f(z) = z. This shows that if X doesn’t vanish on 9D, then it points

outward at every point of 9D. In this case it follows from a) that it has a zero in the interior of D. In
both cases there is g € D with X (z¢) = 0, that is f(zo) = 0.

1To be specific, assume X points outward on 9D and doesn’t have zeros in D°, then by uniform continuity there exists
r € (0,1) such that (X(z),2) > 0 on D\ D2, where D, is the disk centered at 0 of radius r. We define X = X on D, and
X(z) = %‘f‘X(m) + (lz| — 7)z if |z| € [r,1]. Then X points radially towards the exterior on &D and is nowhere vanishing

on D (note (X (x),z) > 0 if r < |z| < 1), and we can obtain a contradiction as in the solution.

2. Hyperbolic Trigonometry

Consider a geodesic triangle with angles «, 8, at the vertices A, B, C and sides of lengths a, b, ¢ opposite to
A, B, C, respectively, in the hyperbolic plane (H?,g) C R%!. Prove the following trigonometric identities of
hyperbolic geometry:

a) sinhc¢ sin 8 = sinh b siny (law of sines),
b) cosh¢ = cosha coshb — sinha sinh b cosy (law of cosines),

¢) cosy = sina sin 8 cosh ¢ — cos @ cos 8 (law of cosines for angles).
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Hint: Choose B in ez and C in the plane spanned by e; and es, then compute the coordinates of A in two

different ways.

Solution:

We denote by opg the unit-speed geodesic from P to @ and by vpg = U}Q(O) € TH?% the vector in
direction of ). We know that
opqg(s) = cosh(s) P + sinh(s) vpg.

We assume that B = e3, vpc = e1, and g(vpa,e2) > 0. Then

A =coshc-B+sinhc-vpa

=coshc- ez +sinhe- (cos - ep +sin - es).
On the other hand,

A =coshb-C+sinhb-vca

= coshb - (cosha - ez +sinha-e;) +sinhb - voa.
To determine vc 4, notice that v € THZ = span{vcp, e2} and
vop = —0pe(a) = —(sinha - e3 + cosha - e1).

Since (vcp,e2) is an orthonormal basis of THZ, and since g(vop,vca) = cosy and g(ea,vca) > 0, it
follows that

VoA = COS7Y - Vop +siny - ey

= —cos7 - (sinha-e3+cosha-e)+siny-es.

We conclude that

sinh ¢ cos 3 sinh a coshb — cosh a sinh b cos~y
A= | sinhcsing | = sinh b sin
cosh ¢ cosh a cosh b — sinh a sinh b cos~y

This yields a) and b) as well as a third identity. Using the latter and the law of sines, with permuted

entries, we get

sinh a (sin v sin 8 cosh ¢ — cos a cos 3)
= (sinh a sin 8) sin a cosh ¢ — (sinh a cos f) cos «
= (sinh b sin &) sin &« cosh ¢ — (sinh ¢ cosh b — cosh ¢ sinh b cos &) cos a
= sinh b cosh ¢ — cosh b sinh ¢ cos
= sinha cos~.

This gives c). Note that this shows explicitly that in hyperbolic geometry (unlike in Euclidean geometry),

the three angles of a geodesic triangle determine its side lengths.
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3. Circles in H?

Consider a circle S C H? of radius r > 0 in the hyperbolic plane. Determine the length L of S, the (constant)
geodesic curvature k of S (with respect to the inward normal), and the area A of the disk D C H? bounded

by S. (Hint: save work by making use of a relation between these three quantities.) What is the behavior of

k = k(r) when r — co?

Solution:

First, recall that by the homogeneity of the hyperbolic plane (Theorem 7.2), L, A, x do not depend on
the position of the center of the circle (needless to say that all quantities are measured with respect to
the hyperbolic metric, independent of a specific model — otherwise the problem would not be well-posed).
Suppose that p = (0,0,1) € H? C R*! is the center of S. For any unit vector v € THZ?7 the geodesic ¢
with ¢(0) = p and ¢/(0) = v is given by ¢(s) = cosh(s)p + sinh(s)v. Hence, S is the circle of Euclidean
radius sinh(r) in the horizontal plane P = R? x {cosh(r)} C R%!. Since (w,w);, = |w|? (Euclidean norm)

for all vectors w tangent to P, it follows that L = 27 sinh(r). The area is
A= / 27 sinh(s) ds = 2w (cosh(r) — 1).
0

By the Gauss—Bonnet theorem, —A + kL = 27, thus x = k(r) = coth(r), and x(r) — 1 for r — oo. [By
contrast, in R?, k(r) = 1 — 0]

Alternative 1. For S as above and p := sinh(r), a unit speed parametrization of S is given by
t > o(t) := (cos(p~'t)p,sin(p~t)p, cosh(r)).

Then ¢”(0) = (—p~1,0,0), and the inward unit normal of S at o(0) is the vector —c/(r) = —(cosh(r), 0, p),
where s — ¢(s) = (sinh(s), 0, cosh(s)) is the radial geodesic through o(0). Hence,

k= (c"(0), —c'(r))r, = p~* cosh(r) = coth(r).

Alternative 2. Let S be the circle with center p = 0 and (hyperbolic) radius r in the Poincaré (disk) model
(U, g) of H?, where g, = 4(1 — |z|?>)72(-,-). If a € (0,1) is the Euclidean radius of S, then

a9 a9 1 1+a
= S at= ——t——dt=1
" /0 11— /0 T+¢ 1t Og<1—a>’

thus a = (e" — 1)/(e" + 1) [= tanh(r/2)] and

2
L =2ra- m =...= 27TSinh(7").

Warning. Here, the upper halfspace model (U*,g") is a bad choice. This model is conformal, thus
hyperbolic circles are still represented by Euclidean circles; however, the respective centers do not coincide.
Recall that s — (0,e®) is a unit speed geodesic. Hence, the hyperbolic circle with center p = (0,1) and
radius r > 0 passes through the points (0,e~") and (0, e"), whose Euclidean midpoint is (0, cosh(r)).
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