Solution 9

1. Isometries of the Hyperbolic Upper Half-Plane

Let $H^2 := \{x + iy \in \mathbb{C} : y > 0\}$ be the upper half-plane endowed with the hyperbolic metric $(g_{ij})(x, y) = \frac{1}{y^2}(\delta_{ij})$. The group $GL(2, \mathbb{R})$ acts on H^2 in the following way.

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2,\mathbb{R})$, then the group action is given by

$$z \longmapsto \frac{az+b}{cz+d}, \quad \text{if } ad-bc > 0,$$
$$z \longmapsto \frac{a\overline{z}+b}{c\overline{z}+d}, \quad \text{if } ad-bc < 0.$$

- a) Prove that $GL(2,\mathbb{R})$ acts on H^2 by isometries.
- b) Prove that the isometry group of H^2 is isomorphic to $PGL(2, \mathbb{R}) := GL(2, \mathbb{R})/\{\lambda I : \lambda \neq 0\}$, where I is the identity in $GL(2, \mathbb{R})$.

Solution:

a) We first show that $GL(2,\mathbb{R})$ acts on H^2 :

For z = x + iy with y > 0 and ad - bc > 0, it follows that

$$\frac{az+b}{cz+d} = \frac{(az+b)(c\bar{z}+d)}{|cz+d|^2} = \frac{ac|z|^2 + bd + bc\bar{z} + adz}{|cz+d|^2}$$

 \mathbf{SO}

$$\Im\left(\frac{az+b}{cz+d}\right) = \frac{(ad-bc)y}{|cz+d|^2} > 0,$$

and for z = x + iy with y > 0 and ad - bc < 0 it follows that

$$\Im\left(\frac{a\overline{z}+b}{c\overline{z}+d}\right) = \frac{(ad-bc)(-y)}{|cz+d|^2} > 0$$

As for compatibility, we compute

$$\frac{a_1\frac{a_2z+b_2}{c_2z+d_2}+b_1}{c_1\frac{a_2z+b_2}{c_2z+d_2}+d_1} = \frac{(a_1a_2+b_1c_2)z+(a_1b_2+b_1d_2)}{(c_1a_2+d_1c_2)z+(c_1b_2+d_2d_1)},$$

which is $\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$ acting at z, and the other cases are similar. We now show that it's an action by isometries. Notice that

$$\frac{az+b}{cz+d} = \frac{a}{c} - \frac{ad-bc}{c^2z+cd}$$

and therefore we can write every action as composition of maps of the form $f_1: z \mapsto az \ (a > 0), f_2: z \mapsto z+b \ (b \in \mathbb{R}), f_3: z \mapsto -\overline{z}$ and $f_4: z \mapsto -\frac{1}{z}$. These are all isometries. We show the computations for $f_4:$

Let $u \coloneqq 1$, $v \coloneqq i \in TM_z$, then $f_4(z) = -\frac{\overline{z}}{|z|^2}$ and $f'_4(z) = \frac{1}{z^2} = \frac{\overline{z}^2}{|z|^4}$. Therefore

$$\begin{split} g_{f_4(z)}(df_4(u), df_4(u)) &= \frac{|z|^4}{y^2} \left\langle \frac{\overline{z}^2}{|z|^4}, \frac{\overline{z}^2}{|z|^4} \right\rangle = \frac{|z|^4}{y^2} \frac{|\overline{z}^2|^2}{|z|^8} = \frac{1}{y^2} = g_z(u, u), \\ g_{f_4(z)}(df_4(v), df_4(v)) &= \frac{|z|^4}{y^2} \left\langle \frac{\overline{z}^2 i}{|z|^4}, \frac{\overline{z}^2 i}{|z|^4} \right\rangle = \frac{|z|^4}{y^2} \frac{|\overline{z}^2 i|^2}{|z|^8} = \frac{1}{y^2} = g_z(v, v), \\ g_{f_4(z)}(df_4(u), df_4(v)) &= \frac{|z|^4}{y^2} \left\langle \frac{\overline{z}^2}{|z|^4}, \frac{\overline{z}^2 i}{|z|^4} \right\rangle = 0. \end{split}$$

b) The group action of $GL(2,\mathbb{R})$ is transitive on points and on their tangent spaces. Indeed,

$$x + iy = \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \cdot i,$$

moreover for $v \in S^1 \subset TH_i^2 = \mathbb{C}$ we can find a point $a + bi \in S^1$ with $v = (a + bi)^2$. We define $f(z) \coloneqq \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \cdot z$. Then on one hand

$$f(i) = \frac{ai+b}{-bi+a} = i$$

while on the other hand

$$df_i(1) = \frac{a^2 + b^2}{(bi - a)^2} = \frac{(a + bi)^2}{a^2 + b^2} = v.$$

With $z \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot z = -\overline{z}$ we obtain also all orientation-reversing isometries of H^2 . As an isometry of H^2 is completely determined by the image of one point and one of

As an isometry of H^2 is completely determined by the image of one point and one orthonormal basis of the tangent space at that point (since isometries preserve geodesics), we have found a surjective group homomorphism $\Phi: \operatorname{GL}(2,\mathbb{R}) \to \operatorname{Isom}(H^2)$. We will now compute the kernel of Φ .

The matrix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is in the kernel of Φ if and only if, for all $z \in H^2$ it holds that
$$\frac{az+b}{cz+d} = z \qquad \Leftrightarrow \qquad cz^2 + (d-a)z - b = 0 \qquad \Leftrightarrow \qquad a = d \text{ and } b = c = 0.$$

We conclude that $\operatorname{Ker} \Phi = \{\lambda I : \lambda \neq 0\}$ and hence

$$\operatorname{Isom}(H^2) \cong \operatorname{GL}(2,\mathbb{R})/\{\lambda I : \lambda \neq 0\} = \operatorname{PGL}(2,\mathbb{R}).$$

2. Differentiable Structures on \mathbb{R}

a) Let $\varphi, \psi \colon \mathbb{R} \to \mathbb{R}$ be defined as

$$\varphi(x) \coloneqq x^3$$
 and $\psi(x) \coloneqq \begin{cases} x, & x < 0, \\ 2x, & x \ge 0. \end{cases}$

Do the atlases $\mathcal{A}_1 \coloneqq \{ \mathrm{id}_{\mathbb{R}} \}$, $\mathcal{A}_2 \coloneqq \{ \varphi \}$ and $\mathcal{A}_3 \coloneqq \{ \psi \}$ induce different differentiable structures on \mathbb{R} ?

b) Prove that if two C^{∞} -manifolds are homeomorphic to \mathbb{R} , then they are diffeomorphic to each other.

Hint: Prove that every differentiable structure on \mathbb{R} is diffeomorphic to the one induced by \mathcal{A}_1 .

Solution:

a) The three atlases induce different C^{∞} -structures on \mathbb{R} as the identity map $i_{\mathbb{R}}$ from $(\mathbb{R}, \mathcal{A}_i)$ to $(\mathbb{R}, \mathcal{A}_j)$, $i \neq j$, is not a diffeomorphism (i.e. the charts are not C^{∞} -compatible).

b) Let (M, \mathcal{A}) be a C^{∞} -manifold and $\phi \colon M \to \mathbb{R}$ a homeomorphism. Then

$$\mathcal{A}' := \{ (\phi(U), \psi \circ \phi^{-1}) : (U, \psi) \in \mathcal{A} \}$$

is a C^{∞} -atlas on \mathbb{R} and $\phi: (M, \mathcal{A}) \to (\mathbb{R}, \mathcal{A}')$ is a diffeomorphism. We will now show that $(\mathbb{R}, \mathcal{A}')$ and $(\mathbb{R}, \mathcal{A}_1)$ are diffeomorphic. By transitivity this will show that that any two smooth manifolds homeomorphic to \mathbb{R} are diffeomorphic to each other.

We will first show that there exists a (global) chart $(U', \psi') \in \mathcal{A}'$ with $U' = \mathbb{R}$. Choose charts $\{(U'_i, \psi'_i)\}_{i \in \mathbb{Z}} \subset \mathcal{A}'$ with U'_i connected, such that $\{U'_i\}_{i \in \mathbb{Z}}$ is a covering of \mathbb{R} . We can assume that $U'_i = (a_i, b_i)$ and $a_i < b_{i-1} < a_{i+1} < b_i$. We can also assume¹ that the maps ψ'_i 's are strictly monotonically increasing and $\psi'_i((a_i, b_i)) = (c_i, d_i)$ with $d_i < c_{i+1}, c_i \to \infty$ $(i \to \infty)$ and $c_i \to -\infty$ $(i \to -\infty)$. In particular the ψ'_i 's have the same orientation.

Now, let $\{\lambda_i \colon \mathbb{R} \to [0,1]\}_{i \in \mathbb{Z}}$ be a subordinate C^{∞} -partition of unity. Notice that it can be chosen such than $\lambda_i|_{(a_i,b_{i-1})}$ is monotonically increasing and $\lambda_i|_{(a_{i+1},b_i)}$ is monotonically decreasing.

We define the map $\psi' \colon \mathbb{R} \to \mathbb{R}$,

$$\psi'(t) \coloneqq \sum_{i \in \mathbb{Z}} \lambda_i(t) \cdot \psi'_i(t).$$

This map is strictly monotone, since for $s < t \in U'_i \cap U'_{i+1}$ it holds that

$$\psi'(s) = \lambda_{i}(s)\psi'_{i}(s) + (1 - \lambda_{i}(s))\psi'_{i+1}(s) < \lambda_{i}(s)\psi'_{i}(t) + (1 - \lambda_{i}(s))\psi'_{i+1}(t) = \psi'_{i+1}(t) + \underbrace{\lambda_{i}(s)}_{\geq\lambda_{i}(t)}\underbrace{(\psi'_{i}(t) - \psi'_{i+1}(t))}_{<0} \leq \psi'_{i+1}(t) + \lambda_{i}(t)(\psi'_{i}(t) - \psi'_{i+1}(t)) = \lambda_{i}(t)\psi'_{i}(t) + (1 - \lambda_{i}(t))\psi'_{i+1}(t) = \psi'(t).$$

Hence ψ' is a homeomorphism. Moreover for a chart $(U'', \psi'') \in \mathcal{A}'$ we have

$$\psi' \circ \psi''^{-1} = \sum_{i \in \mathbb{Z}} (\lambda_i \circ \psi''^{-1}) \cdot (\psi'_i \circ \psi''^{-1}) \in C^{\infty}(\mathbb{R}),$$

since the λ_i 's are smooth and the $(\psi'_i \circ \psi''^{-1})$'s are change of coordinates in \mathcal{A}' . If now (U'', ψ'') is positively oriented², we also have

$$\frac{d}{dt}(\psi_i'\circ\psi''^{-1})(t)>0.$$

So for any $t \in \psi''(U'_i \cap U'_{i+1} \cap U'')$, there exists $\varepsilon > 0$ (possibly depending on t) such that

$$\frac{d}{dt}(\psi_i'\circ\psi^{\prime\prime-1})(t), \ \frac{d}{dt}(\psi_{i+1}'\circ\psi^{\prime\prime-1})(t)\geq\varepsilon.$$

Then

$$\begin{aligned} \frac{d}{dt} \left(\psi' \circ \psi''^{-1} \right)(t) \\ &= \frac{d}{dt} \left((\lambda_i \circ \psi''^{-1})(t) \cdot (\psi'_i \circ \psi''^{-1})(t) + (1 - (\lambda_i \circ \psi''^{-1})(t)) \cdot (\psi'_{i+1} \circ \psi''^{-1})(t) \right) \\ &= \underbrace{\frac{d}{dt} (\lambda_i \circ \psi''^{-1})(t)}_{\leq 0} \cdot \underbrace{\left((\psi'_i \circ \psi''^{-1})(t) - (\psi'_{i+1} \circ \psi''^{-1})(t) \right)}_{\leq 0} \\ &+ (\lambda_i \circ \psi''^{-1})(t) \cdot \underbrace{\frac{d}{dt} (\psi'_i \circ \psi''^{-1})(t)}_{\geq \varepsilon} \\ &+ (1 - (\lambda_i \circ \psi''^{-1})(t)) \cdot \underbrace{\frac{d}{dt} (\psi'_{i+1} \circ \psi''^{-1})(t)}_{\geq \varepsilon} \\ &\geq (\lambda_i \circ \psi''^{-1})(t) \cdot \varepsilon + (1 - (\lambda_i \circ \psi''^{-1})(t)) \cdot \varepsilon = \varepsilon > 0. \end{aligned}$$

Therefore by the inverse function theorem $\psi'' \circ \psi'^{-1} = (\psi' \circ \psi''^{-1})^{-1}$ is smooth and so $(\mathbb{R}, \psi') \in \mathcal{A}'$. Now set $\Psi : (\mathbb{R}, \mathcal{A}') \to (\mathbb{R}, \mathcal{A}_1), \Psi(t) \coloneqq \psi'(t)$. For a chart $(U'', \psi'') \in \mathcal{A}'$ it holds that

 $id_{\mathbb{R}} \circ \Psi \circ \psi''^{-1} = \psi' \circ \psi''^{-1}$

is a diffeomorphism, because it's a change of coordinates in \mathcal{A}' .

This shows that Ψ is a diffeomorphism between $(\mathbb{R}, \mathcal{A}')$ and $(\mathbb{R}, \mathcal{A}_1)$.

 1 Up to taking smaller intervals and composing with the multiplication by -1 or translations in the image.

²Otherwise make it positively oriented by composing it with the multiplication by -1 in the image. If we prove that the positively oriented one is a diffeomorphism then also the negatively oriented one will be.

3. Proper Functions

A function $f: M \to \mathbb{R}$ is called *proper* if $f^{-1}(K)$ is compact for every compact subset $K \subset \mathbb{R}$.

Let M be a C^{∞} -manifold. Prove that there exists a proper C^{∞} -function on M.

Hint: Use a partition of unity.

Solution:

Let $\{U_i\}_{i=1}^{\infty}$ be an open covering of M, such that $\overline{U_i}$ is compact. Let $\{\lambda_i \colon M \to [0,1]\}_{i=1}^{\infty}$ be a subordinate C^{∞} partition of unity. The we define $f \colon M \to \mathbb{R}$ by

$$f(p) := \sum_{i=1}^{\infty} i\lambda_i(p).$$

As the sum is locally finite, it follows that $f \in C^{\infty}(M)$.

Now, let $K \subset [-N, N]$ be a compact set. We claim that $f^{-1}(K) \subset \bigcup_{i=1}^{N} \overline{U_i}$ Indeed, if $p \notin \bigcup_{i=1}^{N} \overline{U_i}$, then $\lambda_i(p) = 0$ for i = 1, ..., N and therefore

$$f(p) = \sum_{i=N+1}^{\infty} i\lambda_i(p) > \sum_{i=N+1}^{\infty} N\lambda_i(p) = N \sum_{i=1}^{\infty} \lambda_i(p) = N.$$

This proves the claim and since $f^{-1}(K)$ is a closed subset of the compact set $\bigcup_{i=1}^{N} \overline{U_i}$, is itself compact.