Solution 9

1. Isometries of the Hyperbolic Upper Half-Plane

Let $H^2 := \{x+iy \in \mathbb{C} : y > 0\}$ be the upper half-plane endowed with the hyperbolic metric $(g_{ij})(x, y) = \frac{1}{y^2}(\delta_{ij}).$ The group $GL(2,\mathbb{R})$ acts on H^2 in the following way.

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{R})$, then the group action is given by

$$
z \longmapsto \frac{az+b}{cz+d}, \quad \text{if } ad-bc > 0,
$$

$$
z \longmapsto \frac{a\overline{z}+b}{c\overline{z}+d}, \quad \text{if } ad-bc < 0.
$$

- a) Prove that $GL(2, \mathbb{R})$ acts on H^2 by isometries.
- b) Prove that the isometry group of H^2 is isomorphic to $PGL(2,\mathbb{R}) := GL(2,\mathbb{R})/\{\lambda I : \lambda \neq 0\}$, where I is the identity in $GL(2,\mathbb{R})$.

Solution:

a) We first show that $GL(2,\mathbb{R})$ acts on H^2 :

For $z = x + iy$ with $y > 0$ and $ad - bc > 0$, it follows that

$$
\frac{az+b}{cz+d} = \frac{(az+b)(c\bar{z}+d)}{|cz+d|^2} = \frac{ac|z|^2 + bd + bc\bar{z} + adz}{|cz+d|^2},
$$

so

$$
\Im\left(\frac{az+b}{cz+d}\right) = \frac{(ad-bc)y}{|cz+d|^2} > 0,
$$

and for $z = x + iy$ with $y > 0$ and $ad - bc < 0$ it follows that

$$
\Im\left(\frac{a\overline{z}+b}{c\overline{z}+d}\right) = \frac{(ad-bc)(-y)}{|cz+d|^2} > 0.
$$

As for compatibility, we compute

$$
\frac{a_1 \frac{a_2 z + b_2}{c_2 z + d_2} + b_1}{c_1 \frac{a_2 z + b_2}{c_2 z + d_2} + d_1} = \frac{(a_1 a_2 + b_1 c_2)z + (a_1 b_2 + b_1 d_2)}{(c_1 a_2 + d_1 c_2)z + (c_1 b_2 + d_2 d_1)},
$$

which is $\begin{pmatrix} a_1 & b_1 \\ 1 & b_1 \end{pmatrix}$ c_1 d_1 $\bigwedge a_2 \quad b_2$ c_2 d_2 \setminus acting at z, and the other cases are similar. We now show that it's an action by isometries. Notice that

$$
\frac{az+b}{cz+d} = \frac{a}{c} - \frac{ad-bc}{c^2z+cd}
$$

and therefore we can write every action as composition of maps of the form $f_1 : z \mapsto az$ $(a > 0), f_2 : z \mapsto z+b$ $(b \in \mathbb{R})$, $f_3: z \mapsto -\overline{z}$ and $f_4: z \mapsto -\frac{1}{z}$. These are all isometries. We show the computations for $f_4:$

Let $u := 1, v := i \in TM_z$, then $f_4(z) = -\frac{\overline{z}}{|z|^2}$ and $f'_4(z) = \frac{1}{z^2} = \frac{\overline{z}^2}{|z|}$ $\frac{z^2}{|z|^4}$. Therefore

$$
g_{f_4(z)}(df_4(u), df_4(u)) = \frac{|z|^4}{y^2} \left\langle \frac{\overline{z}^2}{|z|^4}, \frac{\overline{z}^2}{|z|^4} \right\rangle = \frac{|z|^4}{y^2} \frac{|\overline{z}^2|^2}{|z|^8} = \frac{1}{y^2} = g_z(u, u),
$$

\n
$$
g_{f_4(z)}(df_4(v), df_4(v)) = \frac{|z|^4}{y^2} \left\langle \frac{\overline{z}^2 i}{|z|^4}, \frac{\overline{z}^2 i}{|z|^4} \right\rangle = \frac{|z|^4}{y^2} \frac{|\overline{z}^2 i|^2}{|z|^8} = \frac{1}{y^2} = g_z(v, v),
$$

\n
$$
g_{f_4(z)}(df_4(u), df_4(v)) = \frac{|z|^4}{y^2} \left\langle \frac{\overline{z}^2}{|z|^4}, \frac{\overline{z}^2 i}{|z|^4} \right\rangle = 0.
$$

b) The group action of $GL(2,\mathbb{R})$ is transitive on points and on their tangent spaces. Indeed,

$$
x + iy = \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \cdot i,
$$

moreover for $v \in S^1 \subset TH_i^2 = \mathbb{C}$ we can find a point $a + bi \in S^1$ with $v = (a + bi)^2$. We define $f(z) \coloneqq$ $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \cdot z$. Then on one hand

$$
f(i) = \frac{ai + b}{-bi + a} = i
$$

while on the other hand

$$
df_i(1) = \frac{a^2 + b^2}{(bi - a)^2} = \frac{(a + bi)^2}{a^2 + b^2} = v.
$$

With $z \mapsto$ $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot z = -\overline{z}$ we obtain also all orientation-reversing isometries of H^2 .

As an isometry of H^2 is completely determined by the image of one point and one orthonormal basis of the tangent space at that point (since isometries preserve geodesics), we have found a surjective group homomorphism $\Phi: GL(2, \mathbb{R}) \to \text{Isom}(H^2)$. We will now compute the kernel of Φ .

The matrix
$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
 is in the kernel of Φ if and only if, for all $z \in H^2$ it holds that
\n
$$
\frac{az+b}{cz+d} = z \qquad \Leftrightarrow \qquad cz^2 + (d-a)z - b = 0 \qquad \Leftrightarrow \qquad a = d \text{ and } b = c = 0.
$$

We conclude that Ker $\Phi = {\lambda I : \lambda \neq 0}$ and hence

$$
Isom(H^{2}) \cong GL(2, \mathbb{R})/\{\lambda I : \lambda \neq 0\} = PGL(2, \mathbb{R}).
$$

2. Differentiable Structures on R

a) Let $\varphi, \psi \colon \mathbb{R} \to \mathbb{R}$ be defined as

$$
\varphi(x) \coloneqq x^3 \quad \text{and} \quad \psi(x) \coloneqq \begin{cases} x, & x < 0, \\ 2x, & x \ge 0. \end{cases}
$$

Do the atlases $A_1 \coloneqq \{id_{\mathbb{R}}\}, A_2 \coloneqq \{\varphi\}$ and $A_3 \coloneqq \{\psi\}$ induce different differentiable structures on \mathbb{R} ?

b) Prove that if two C^{∞} -manifolds are homeomorphic to R, then they are diffeomorphic to each other.

Hint: Prove that every differentiable structure on $\mathbb R$ is diffeomorphic to the one induced by \mathcal{A}_1 .

Solution:

a) The three atlases induce different C^{∞} -structures on R as the identity map i_R from $(\mathbb{R}, \mathcal{A}_i)$ to $(\mathbb{R}, \mathcal{A}_i)$, $i \neq j$, is not a diffeomorphism (i.e. the charts are not C^{∞} -compatible).

b) Let (M, \mathcal{A}) be a C^{∞} -manifold and $\phi \colon M \to \mathbb{R}$ a homeomorphism. Then

$$
\mathcal{A}' := \{ (\phi(U), \psi \circ \phi^{-1}) : (U, \psi) \in \mathcal{A} \}
$$

is a C^{∞} -atlas on $\mathbb R$ and $\phi: (M, \mathcal A) \to (\mathbb R, \mathcal A')$ is a diffeomorphism. We will now show that $(\mathbb R, \mathcal A')$ and $(\mathbb{R}, \mathcal{A}_1)$ are diffeomorphic. By transitivity this will show that that any two smooth manifolds homeomorphic to R are diffeomorphic to each other.

We will first show that there exists a (global) chart $(U',\psi') \in \mathcal{A}'$ with $U' = \mathbb{R}$. Choose charts $\{(U'_i,\psi'_i)\}_{i\in\mathbb{Z}}\subset \mathcal{A}'$ with U'_i connected, such that $\{U'_i\}_{i\in\mathbb{Z}}$ is a covering of R. We can assume that U'_i (a_i, b_i) and $a_i < b_{i-1} < a_{i+1} < b_i$ $a_i < b_{i-1} < a_{i+1} < b_i$ $a_i < b_{i-1} < a_{i+1} < b_i$. We can also assume¹ that the maps ψ_i 's are strictly monotonically increasing and $\psi'_i((a_i, b_i)) = (c_i, d_i)$ with $d_i < c_{i+1}, c_i \to \infty$ $(i \to \infty)$ and $c_i \to -\infty$ $(i \to -\infty)$. In particular the ψ_i 's have the same orientation.

Now, let $\{\lambda_i: \mathbb{R} \to [0,1]\}_{i\in \mathbb{Z}}$ be a subordinate C^{∞} -partition of unity. Notice that it can be chosen such than $\lambda_i|_{(a_i,b_{i-1})}$ is monotonically increasing and $\lambda_i|_{(a_{i+1},b_i)}$ is monotonically decreasing.

We define the map $\psi' : \mathbb{R} \to \mathbb{R}$,

$$
\psi'(t) \coloneqq \sum_{i \in \mathbb{Z}} \lambda_i(t) \cdot \psi'_i(t).
$$

This map is strictly monotone, since for $s < t \in U'_i \cap U'_{i+1}$ it holds that

$$
\psi'(s) = \lambda_i(s)\psi'_i(s) + (1 - \lambda_i(s))\psi'_{i+1}(s) < \lambda_i(s)\psi'_i(t) + (1 - \lambda_i(s))\psi'_{i+1}(t) \n= \psi'_{i+1}(t) + \lambda_i(s)\underbrace{(\psi'_i(t) - \psi'_{i+1}(t))}_{\geq \lambda_i(t)} \n= \lambda_i(t)\psi'_i(t) + (1 - \lambda_i(t))\psi'_{i+1}(t) \n= \psi'(t).
$$

Hence ψ' is a homeomorphism. Moreover for a chart $(U'', \psi'') \in \mathcal{A}'$ we have

$$
\psi' \circ \psi''^{-1} = \sum_{i \in \mathbb{Z}} (\lambda_i \circ \psi''^{-1}) \cdot (\psi_i' \circ \psi''^{-1}) \in C^{\infty}(\mathbb{R}),
$$

since the λ_i 's are smooth and the $(\psi_i' \circ \psi''^{-1})$'s are change of coordinates in \mathcal{A}' . If now (U'', ψ'') is positively oriented^{[2](#page-3-1)}, we also have

$$
\frac{d}{dt}(\psi_i' \circ \psi''^{-1})(t) > 0.
$$

So for any $t \in \psi''(U_i' \cap U_{i+1}' \cap U'')$, there exists $\varepsilon > 0$ (possibly depending on t) such that

$$
\frac{d}{dt}(\psi_i'\circ\psi''^{-1})(t),\ \frac{d}{dt}(\psi_{i+1}'\circ\psi''^{-1})(t)\geq\varepsilon.
$$

Then

$$
\frac{d}{dt} \left(\psi' \circ \psi''^{-1} \right)(t)
$$
\n
$$
= \frac{d}{dt} \left((\lambda_i \circ \psi''^{-1})(t) \cdot (\psi_i' \circ \psi''^{-1})(t) + (1 - (\lambda_i \circ \psi''^{-1})(t)) \cdot (\psi_{i+1}' \circ \psi''^{-1})(t) \right)
$$
\n
$$
= \frac{d}{dt} (\lambda_i \circ \psi''^{-1})(t) \cdot \underbrace{\left((\psi_i' \circ \psi''^{-1})(t) - (\psi_{i+1}' \circ \psi''^{-1})(t) \right)}_{\leq 0}
$$
\n
$$
+ (\lambda_i \circ \psi''^{-1})(t) \cdot \underbrace{\frac{d}{dt} (\psi_i' \circ \psi''^{-1})(t)}_{\geq \varepsilon}
$$
\n
$$
+ (1 - (\lambda_i \circ \psi''^{-1})(t)) \cdot \underbrace{\frac{d}{dt} (\psi_{i+1}' \circ \psi''^{-1})(t)}_{\geq \varepsilon}
$$
\n
$$
\geq (\lambda_i \circ \psi''^{-1})(t) \cdot \varepsilon + (1 - (\lambda_i \circ \psi''^{-1})(t)) \cdot \varepsilon = \varepsilon > 0.
$$

Therefore by the inverse function theorem $\psi'' \circ \psi'^{-1} = (\psi' \circ \psi''^{-1})^{-1}$ is smooth and so $(\mathbb{R}, \psi') \in \mathcal{A}'$. Now set $\Psi: (\mathbb{R}, \mathcal{A}') \to (\mathbb{R}, \mathcal{A}_1), \Psi(t) \coloneqq \psi'(t)$. For a chart $(U'', \psi'') \in \mathcal{A}'$ it holds that

 $\mathrm{id}_\mathbb{R} \circ \Psi \circ \psi''^{-1} = \psi' \circ \psi''^{-1}$

is a diffeomorphism, because it's a change of coordinates in A' .

This shows that Ψ is a diffeomorphism between $(\mathbb{R}, \mathcal{A}')$ and $(\mathbb{R}, \mathcal{A}_1)$.

¹Up to taking smaller intervals and composing with the multiplication by -1 or translations in the image.

²Otherwise make it positively oriented by composing it with the multiplication by -1 in the image. If we prove that the positively oriented one is a diffeomorphism then also the negatively oriented one will be.

3. Proper Functions

A function $f: M \to \mathbb{R}$ is called *proper* if $f^{-1}(K)$ is compact for every compact subset $K \subset \mathbb{R}$.

Let M be a C^{∞} -manifold. Prove that there exists a proper C^{∞} -function on M.

Hint: Use a partition of unity.

Solution:

Let $\{U_i\}_{i=1}^{\infty}$ be an open covering of M, such that $\overline{U_i}$ is compact. Let $\{\lambda_i: M \to [0,1]\}_{i=1}^{\infty}$ be a subordinate C^{∞} partition of unity. The we define $f: M \to \mathbb{R}$ by

$$
f(p) := \sum_{i=1}^{\infty} i \lambda_i(p).
$$

As the sum is locally finite, it follows that $f \in C^{\infty}(M)$.

Now, let $K \subset [-N, N]$ be a compact set. We claim that $f^{-1}(K) \subset \bigcup_{i=1}^N \overline{U_i}$ Indeed, if $p \notin \bigcup_{i=1}^N \overline{U_i}$, then $\lambda_i(p) = 0$ for $i = 1, ..., N$ and therefore

$$
f(p) = \sum_{i=N+1}^{\infty} i\lambda_i(p) > \sum_{i=N+1}^{\infty} N\lambda_i(p) = N \sum_{i=1}^{\infty} \lambda_i(p) = N.
$$

This proves the claim and since $f^{-1}(K)$ is a closed subset of the compact set $\bigcup_{i=1}^N \overline{U_i}$, is itself compact.